Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
\(\text{GIẢI :}\)
ĐKXĐ : \(a\ne\pm1\).
\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).
a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)
b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)
\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)
\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)
\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)
\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)
\(=\frac{a}{a-1}\)
c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:
( làm nốt)
TH kia tương tự
Điều kiện : \(a\ne1\)
\(A=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}+\frac{2a}{a^2+1-a^3-a}\right)-1\)
\(=\frac{a^2+a+1}{a^2+1}:\left(\frac{-a^2-1}{\left(1+a^2\right)\left(1-a\right)}+\frac{2a}{\left(1+a^2\right)\left(1-a\right)}\right)-1\)
\(=\frac{a^2+a+1}{a^2+1}.\frac{\left(a-1\right)\left(1+a^2\right)}{\left(a-1\right)^2}-1=\frac{a^2+a+1}{a-1}-1=\frac{a^2+2}{a-1}\)
b) A < 2 \(\Rightarrow\frac{a^2+2}{a-1}< 2\Leftrightarrow\frac{\left(a^2-2a+1\right)+2\left(a-1\right)+3}{a-1}< 2\)
\(\Leftrightarrow a-1+2+\frac{3}{a-1}< 2\Leftrightarrow a-1+\frac{3}{a-1}< 0\)
Đặt t = a-1 , xét :
Nếu t > 0 thì \(t+\frac{3}{t}< 0\Leftrightarrow t^2+3< 0\) không thỏa mãn vì \(t^2+3>3>0\)
Nếu t < 0 thì \(t+\frac{3}{t}< 0\Leftrightarrow t^2+3>0\) thỏa mãn
Vậy a - 1 < 0 => a < 1 thỏa mãn đề bài
Ta có: \(\frac{a+1}{2a-2}-\frac{1}{2a^2-2}=\frac{\left(a+1\right)^2-1}{2\left(a^2-1\right)}=\frac{a^2+2a+1-1}{2\left(a^2-1\right)}=\frac{a\left(a+2\right)}{2\left(a^2-1\right)}\)
Vậy D=\(\frac{a\left(a+2\right)}{2\left(a^2-1\right)}.\frac{2\left(a+1\right)}{a+2}=\frac{a}{a-1}\)