K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

d: góc ADI=90 độ-góc ABD

góc AID=góc BIH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADI=góc AID

=>ΔAID cân tại A

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAC có BD là phân giác

nen AD/BA=DC/BC

=>AD/3=DC/5=12/8=1,5

=>AD=4,5cm; DC=7,5cm

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Xét ΔBAC có BD là phân giác

nên DA/DC=BA/BC(1)

Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(2)

Ta có: ΔHBA\(\sim\)ΔABC

nên BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=DA/DC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

16 tháng 5 2017

A) Aps dụng định lí đường phân giác trong tam giác ta có :

               \(\frac{AD}{DC}=\frac{AB}{BC}\)

Thay số ta đc : \(\frac{12-DC}{DC}=\frac{9}{15}\)

\(\Rightarrow15\times\left(12-DC\right)=9DC\)

 \(\Leftrightarrow180-15DC=9DC\)

\(\Rightarrow180=9DC+15DC\)

\(\Leftrightarrow24DC=180\)

\(\Rightarrow DC=180\div24=7.5CM\)

Vậy \(AD=12-7.5=4.5CM\)

Xem lại đề câu B nhé bạn

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

c: AD là phân giác

=>AD/DC=BA/BC=AH/AC

=>AD*AC=AH*DC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)