Cho tam giác abc cân tại a có ab=5,bc=8 tính độ dài các đường cao của tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
=> ax = by = cz = a+b+c [*]
ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử: 0 ≤ x ≤ y ≤ z =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1 => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại
*x=2 =>1/y+1 / z= ½. Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4 => 2a = 4b = 4c Áp dụng BDT tam giác vào tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3 => a=b=c=> tam giácABC:đều (đpcm).
Vì tam giác ABC vuông cân tại A nên ta có đường cao BA (đáy AC) = 5, đường cao AC (đáy AB) = 5
Kẻ đường cao AH sao cho AH cắt BC tại H.
Do tam giác ABC cân tại A nên AH vừa là đường cao, vừa là phân giác => Góc HAB = Góc HAC
Xét tam giác BAH và tam giác CAH có:
Góc B = Góc C (tam giác ABC cân)
BA = CA
góc HAB = góc HAC
=> tam giác BAH = tam giác CAH (g.c.g)
=> BH = CH = 1/2 BC = 4
Áp dụng định lí Py-ta-go cho tam giác BAH, ta có:
AH2 + BH2 = AB2
AH2 + 16 = 20
Suy ra, AH = 2
Cho các điểm như hình vẽ. Do ABC cân nên BH = HC = 4. Vậy \(\text{AH = }\sqrt{AB ^2-BH^2}=\sqrt{5^2-4^2}=3\)
Ta thấy \(\frac{KC}{BC}=sinABC=\frac{AH}{AB}=\frac{3}{5}\Rightarrow CK=\frac{8.3}{5}=4,8\)
Do tam giác ABC cân tại A nên BI = CK = 4,8.