CHỨNG MINH RẰNG: 60+ 61 + 62 + 63 + ... + 62014 + 2015 Chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
a) Giải:
Ta có: \(4n-5=4\left(n-3\right)+7\)
Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)
Nên ta có bảng sau:
\(n-3\) | \(n\) |
\(1\) | \(4\) |
\(-1\) | \(2\) |
\(-7\) | \(-4\) |
\(7\) | \(10\) |
Vậy \(n=\left\{2;4;-4;10\right\}\)
b) Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét:
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)
\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
\(\Rightarrowđpcm\)
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Gọi tổng đó là A. Ta có:
A=(61+62)+(63+64)+...+(62013+62014)+(60+2015)
=61(60+61)+63(60+61)+...+62013(60+61)+7x288
=61x7+63x7+...+62013x7+7x288
=7(61+63+...+62013+288) chia hết cho 7
Vậy A chia hết cho 7