K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

Tam giác, tứ giác được gọi chung là đa giác nha p.

22 tháng 6 2016

là .......... @@!

4 tháng 9 2018

A B C H D M N

a,

Vì BC=CD(giả thiết)và AC=BC => AC=CD

=> Tam giac CAD cân tại C

=> D=180-C-A=180-(180-BCA)-D

=> 2D=180-180+60=60

=>D=30

=>CAD=C=30

=> A= BAC +CAD= 60+30=90

=> tam giac ABC vuông tại A

b,

Ta có :

AB=BC=6 cm

=> BD= 2BC= 2.6=12(cm);

Vì tam giác ABC đều nên 

 AH là đường cao cũng là đường trung tuyến

=> HB=HC=1/2 BC=1/2 .6=3(cm)

Xét tam giac ABD có: A=90

=> theo định lý Pytago, ta có:

AD2 =AB2 +BD2 

=> AD= /(AB2+BD2)=  /(62 + (3+6)2) = 10.82(cm)

=> AM=1/2 AD =1/2. 10,82=5,4 (cm)

Vì tam giác CAD cân nên 

CM là dường trung tuyến cũng là dường cao ứng với cạnh đáy AD

Xét tam giác AMC có AMC=90

=> theo định lí Pytago ta có: CM=2.6 (cm)

chu vi tứ giác ABCM là :

AB+BC+CM+AM= 6+6+2.6+5.4=20(cm)

c,

Xét tam giác ACD co

 N là trung điểm của AC

 M là trung điểm của AD

=> NM là đường trung bình của tam giác ACD

=> MN//CD hayMN//CH (1)

      MN=1/2 CD mà CH=1/2 CD => MN=CH (2)

Từ (1)và (2) => tứ giác MNHC là hình bình hành

4 tháng 9 2018

Mình góp ý nha ý a đúng rồi nhưng ý b và c chưa đúng.

b, Bạn ấy sai ở chỗ \(AD^2=AB^2+BD^2\) (tam giác ABD vuông tại A chứ ko phải vuông tại B)

Gợi ý: -Tính \(HB=HC=3cm\)

-Tính \(AH=\sqrt{27}\left(cm\right)\)(định lí Pitago vào tam giác AHB)

-C/m \(\Delta ACD\)cân tại C mà AM là trung tuyến nên AM là đường cao

-Tính \(\widehat{HAC}=\widehat{MAC}=30^0\)

\(\Delta HAC=\Delta MAC\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AM=\sqrt{27}\left(cm\right)\\HC=MC=3cm\end{cases}}\)

Chu vi tứ giác ABCM là: \(AB+BC+CM+AM=6+6+3+\sqrt{27}=15+\sqrt{27}\left(cm\right)\)

c,MNHC chỉ là hình thang. 

Ở đoạn gần cuối bạn ấy ghi \(HC=\frac{1}{2}CD\) là sai vì \(HC=\frac{1}{2}BC\) chứ ko bằng 1/2 CD

Còn MN//HC thì đúng rồi. Chúc bạn học tốt.

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và ACa) Tứ giác BMNC là hình gì? Tại sao ?b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành vàEC=BM.c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :- Hình chữ nhật- Hình thoi- Hình vuôngBài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D quatrung điểm M của AC.a, Tứ giác ADCE là hình gì? Vì sao?b,...
Đọc tiếp

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Tại sao ?
b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành và
EC=BM.
c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :
- Hình chữ nhật
- Hình thoi
- Hình vuông
Bài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a, Tứ giác ADCE là hình gì? Vì sao?
b, Tứ giác ABDM là hình gì? Vì sao?
c, Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d, Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Bài 4. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của
CD. Gọi I là giao điểm của AF và DE, K là giao điểm của BF và CE.
Chứng minh rằng:
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AEFD là hình gì? Vì sao?
c) Chứng minh tứ giác EIFK là hình chữ nhật.
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông

0
DD
26 tháng 12 2022

a) \(DM\) là đường trung bình của tam giác \(ABC\) nên \(DM\parallel AC\).

\(ME\) là đường trung bình của tam giác \(ABC\) nên \(ME \parallel AB\).

Tứ giác \(ADME\) có: \(DM \parallel AE, ME \parallel AD\) nên tứ giác \(ADME\) là hình bình hành. 

b) Tam giác \(ABC\) cân tại \(A\) suy ra \(AB=AC\) suy ra \(AD=AE\) khi đó hình bình hành \(ADME\) là hình thoi. 

c) Tam giác \(ABC\) vuông tại \(A\) suy ra \(\widehat{BAC}=90^o\) khi đó hình bình hành \(ADME\) là hình chữ nhật. 

d) \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AM=\dfrac{BC}{2}=5\left(cm\right)\)

e) \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

\(S_{ADME}=AD.AE=\dfrac{1}{2}AB.\dfrac{1}{2}AC=3.4=12\left(cm^2\right)\)

10 tháng 12 2021

a: Xét ΔABC có

P là trung điểm của AB

Q là trung điểm của AC
Do đó: PQ là đường trung bình của ΔABC

Suy ra: PQ//BC

hay BPQC là hình bình hành

10 tháng 11 2021

image

12 tháng 12 2020

a) Xét ΔABC có 

D là trung điểm của AB(gt)

M là trung điểm của BC(gt)

Do đó: DM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒DM//AC và \(DM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AC và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên DM//AE và DM=AE

Xét tứ giác ADME có 

DM//AE(cmt)

DM=AE(cmt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Khi ΔABC cân tại A thì AB=AC

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên AD=AE

Hình bình hành ADME có AD=AE(cmt)

nên ADME là hình thoi(Dấu hiệu nhận biết hình thoi)

Vậy: Khi ΔABC cân tại A thì ADME là hình thoi

c) Khi ΔABC vuông tại A thì \(\widehat{A}=90^0\)

Hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Vậy: Khi ΔABC vuông tại A thì ADME là hình chữ nhật

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{10}{2}=5cm\)

Vậy: Khi ΔABC vuông tại A thì AM=5cm