K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

Vì \(\frac{1}{3^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2002^2}< \frac{1}{2001.2002}\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)\(=1-\frac{1}{2002}< 1\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}< 1\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)(đpcm)

Nếu mà chỗ 32 ở phân số đầu tiên sửa thành 22 thì trông sẽ đẹp hơn nhé

15 tháng 4 2018

\(Ta\)có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

2 tháng 7 2015

ta tính được A=1/6 => 1/6<1/2

2 tháng 7 2015

Ta có: \(A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=\frac{1}{3}-\frac{1}{3^{99}}\)

\(A=\frac{1}{6}-\frac{1}{2\times3^{99}}\)

Vì \(\frac{1}{2\times3^{99}}>0\) nên \(\frac{1}{6}-\frac{1}{2\times3^{99}}<\frac{1}{6}<\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

24 tháng 3 2016

1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 99/100 < 1

24 tháng 3 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}<1\)

20 tháng 4 2019

kho vler ai biet thi tra loi gium!

28 tháng 4 2016

1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2