Chung to A=1/3^2 + 1/3^2 + 1/4^2 +....+ 1/2002^2 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Ta\)có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
Ta có: \(A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=\frac{1}{3}-\frac{1}{3^{99}}\)
\(A=\frac{1}{6}-\frac{1}{2\times3^{99}}\)
Vì \(\frac{1}{2\times3^{99}}>0\) nên \(\frac{1}{6}-\frac{1}{2\times3^{99}}<\frac{1}{6}<\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 = 99/100 < 1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}<1\)
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2
Vì \(\frac{1}{3^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2002^2}< \frac{1}{2001.2002}\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)
mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)\(=1-\frac{1}{2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)(đpcm)
Nếu mà chỗ 32 ở phân số đầu tiên sửa thành 22 thì trông sẽ đẹp hơn nhé