Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/1^2 + 1/3^2 + 1/4^2 + ...+ 1/2016^2
= 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/2016.2016
S < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2015.2016
S < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2015 - 1/2016
S < 1 - 1/2016
Mà 1 - 1/2016 < 1
=> S < 1
Vậy A < 1
Ủng hộ nha nhà mk nghèo lắm
\(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{2019^2}\)
\(< B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\)
Mà \(B=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)
\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)
1/12+22 + 1/22+32 + 1/32+42 + ... + 1/102+112
< 1/12+12 + 1/22+22 + 1/32+32 + ... + 1/102+102
< 1/2.12 + 1/2.22 + 1/2.32 + ... + 1/2.102
< 1/2.(1/12 + 1/22 + 1/32 + ... + 1/102)
< 1/2.(1 + 1/1.2 + 1/2.3 + ... + 1/9.10)
< 1/2.(1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10)
< 1/2.(2 - 1/10)
< 1/2.(20/10 - 1/10)
< 1/2.19/10
< 19/20
Hình như bn chép sai đề
Vì \(\frac{1}{3^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2002^2}< \frac{1}{2001.2002}\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)
mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)\(=1-\frac{1}{2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}< 1\)
\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)(đpcm)
Nếu mà chỗ 32 ở phân số đầu tiên sửa thành 22 thì trông sẽ đẹp hơn nhé