\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\) ai làm nhanh đúng mình sẽ...........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">
\(2\cdot\left(2x-6\right)+\left(x-1\right)=2\)
\(\Leftrightarrow4x-12+x-1-2=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi
\(\left(3^2\right)^2+2^x=5\left(5+2^2.3\right)\)
\(\Rightarrow81+2^x=5.17\)
\(\Rightarrow81+2^x=85\)
\(\Rightarrow2^x=85-81=4=2^2\Rightarrow x=2\)
\(5^{x-1}+5=150\Rightarrow5^{x-1}=150-5=145\)
Mà không có lũy thừa nào có cơ số là 5 mà kết quả bằng 145 nên x không thỏa mãn điều kiện trên.
\(\left(3-x\right)^6=\left(3-x\right)^4\)
\(\Rightarrow3-x=\left\{-1;0;1\right\}\)
\(\Rightarrow x=\left\{4;3;2\right\}\)
9^2+2^x=5(5+4.3)
81+2^x=5(5+12)
81+2^x=5.17
81+2^x=85
2^x=85-81
2^x=4
vi 4= 2^2 . x=2
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
Theo đề ra ,ta có :
- 1 / 12 < x < 1 / 8 mà x có giá trị nguyên
=> x = 0
Ta có bất đẳng thức giá trị tuyệt đối:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Dấu \(=\)khi \(AB\ge0\).
d) \(\left|x+1\right|+\left|x+2\right|+\left|2x-3\right|\)
\(\ge\left|x+1+x+2\right|+\left|2x-3\right|\)
\(=\left|2x+3\right|+\left|3-2x\right|\)
\(\ge\left|2x+3+3-2x\right|=6\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\\left(2x+3\right)\left(3-2x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le\frac{3}{2}\).
e) \(\left|x+1\right|+\left|x+2\right|+\left|x-3\right|+\left|x-5\right|\)
\(=\left(\left|x+1\right|+\left|3-x\right|\right)+\left(\left|x+2\right|+\left|5-x\right|\right)\)
\(\ge\left|x+1+3-x\right|+\left|x+2+5-x\right|\)
\(=4+7=11\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(3-x\right)\ge0\\\left(x+2\right)\left(5-x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le3\).
Do đó phương trình đã cho vô nghiệm.
\(\left(x+3\right)^3-x\left(3x-1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2-6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3-4x^2+2x+4x^2-2x+1-28=0\)
\(\Leftrightarrow15x^2+26x=0\)
\(\Leftrightarrow15x\left(x+\frac{26}{15}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}15x=0\\x+\frac{26}{15}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{15}\end{cases}}}\)
Ta có: (x - 1)x+2 = (x - 1)x+6
=> (x - 1)x. (x - 1)2 = (x - 1)x. (x - 1)6
=> (x - 1)x. [ (x - 1)2 - (x - 1)6 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^x=0\left(vn\right)\\\left(x-1\right)^2-\left(x-1\right)^6=0\left(1\right)\end{cases}}\)
Từ (1) \(\Rightarrow\left(x-1\right)^2.\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\left(x-1\right)^2\left\{\left[1-\left(x-1\right)^2\right].\left[1+\left(x-1\right)^2\right]\right\}=0\)
\(\Rightarrow\left(x-1\right)^2\left(2x-x^2\right)\left(x^2-2x+2\right)=0\)
\(\Rightarrow\left(x-1\right)^2.x.\left(2-x\right)\left(x^2-2x+2\right)=0\)
=> (x - 1)2 = 0 => x = 1
hoặc x = 0
hoặc 2 - x = 0 => x = 2
hoặc x2 - 2x + 2 = 0 , mà x2 - 2x + 2 = (x - 1)2 + 1 > 0 => vô nghiệm
Vậy x = {0 ; 1 ; 2}