\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)

\(ĐKXĐ:x\ne\pm2\)

Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)

=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)

\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)

=>  \(b=0;a=0\)

Bạn cùng trường :">

10 tháng 3 2020

a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

Ta có: \(x^2+5\ge0\) (vô lí)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)

Vậy ....

c, \(4x^2\left(x-1\right)-x+1=0\)

\(\Leftrightarrow4x^3-4x^2-x+1=0\)

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)

Vậy ....

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ: \(x\ne1,x\ne-3\)

PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)

10 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)

Ta có:

\(pt\Leftrightarrow3a^2+8ab=3b^2\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\)

\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)

\(\Leftrightarrow3a=b;3b=-a\)

Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi

11 tháng 11 2016

 đó chính là -4 minh khong muon giai ra ta lau lam ban

11 tháng 11 2016

rút 4 ra ngoài nhan bạn  4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2 

mik xét cái này cho dễ nhìn nhan 

2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2

= (x+1/x)^2(2-x^2-1/x^2)

= -(x+1/x)^2(x^2-2+1/x^2)

= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2

thế ở trên ta có 

4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2 

4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16

4.4=x^2+8x+16 

suy ra x^2+8x=0 

x(x+8)=0

suy ra x=0 hoặc x=-8 

mak nhìn để bài thì x=0 ko được nên x=-8

12 tháng 3 2020

a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\cdot\left(x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}+x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(2x-\frac{5}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=0\\2x-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{5}{8}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{4};\frac{5}{8}\right\}\)

b) ĐK : x khác 0

 \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\1=x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=-2\\x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{2}\right\}\)

26 tháng 2 2022

hic, mk chx học

10 tháng 5 2017

Câu 1:

a)\(x^2-4+\left(x-2\right)\left(2x+1\right)=0\)

\(\Rightarrow x^2-4+2x^2+x-4x-2=0\)

\(\Rightarrow3x^2-3x-6=0\)

\(\Rightarrow x^2-x-2=0\)(Vì nhân tử chung là 3 thì ra bằng 0)

\(\Rightarrow x^2-2x+x-2=0\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

         Vậy x=-1;2

Câu 2:

a)\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\)

b)\(\frac{x+1}{x-1}-\frac{x-1}{x+2}=\frac{3}{x^2-1}\)(\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\))

\(\Rightarrow\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1^{ }\right)^2}{\left(x^2-1\right)\left(x+2\right)}=\frac{3\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}\)

\(\Rightarrow\left(x+1\right)^2\left(x+2\right)-\left(x+1\right)\left(x-1\right)^2=3x+6\)

\(\Rightarrow\left(x+1\right)\left[\left(x+1\right)\left(x+2\right)-\left(x-1\right)^2\right]=3x+6\)

\(\Rightarrow\left(x+1\right)\left[x^2+3x+2-x^2+2x-1\right]=3x+6\)

\(\Rightarrow\left(x+1\right)\left[5x+1\right]=3x+6\)

\(\Rightarrow5x^2+6x+1-3x-6=0\)

\(\Rightarrow5x^2+3x-5=0\)

\(\Rightarrow x=0,745\left(TM\right)\)

10 tháng 5 2017

a)Ta có:\(1-2x=\frac{-7x-11}{5}\)

\(\Rightarrow\frac{5-10x}{5}=\frac{-7x-11}{5}\)

\(\Rightarrow5-10x=-7x-11\)

\(\Rightarrow5-10x+7x+11=0\)

\(\Rightarrow16-3x=0\)

\(\Rightarrow x=\frac{16}{3}\)

  

30 tháng 3 2019

\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)

\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)

30 tháng 3 2019

\(b,\left(2x+1\right)^2=\left(x-1\right)^2\Rightarrow\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)

24 tháng 2 2020

1) \(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\left|x-1\right|=0\) (2)

Xét : \(x< 1\) thì pt (2) trở thành :

\(\left(x-1\right)\left(x-2\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại do x < 1 )

Xét \(x\ge1\) pt (2) thở thành :

\(\left(x-1\right)\left(x-2\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy : \(x=1\) thỏa mãn pt đã cho.