Cho A= √x+2
√x-3
- Tìm x để A nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A∈Z⇒\(\dfrac{2\left(x+1\right)}{x+3}\in Z\Rightarrow\left(2x+2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(2x+6-4\right)⋮\left(x+3\right)\\ \Rightarrow\left[2\left(x+3\right)-4\right]⋮\left(x+3\right)\)
\(\text{Mà}2\left(x+3\right)⋮\left(x+3\right)\\ \Rightarrow-4⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne\pm1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)
\(b,A=3\\ \Leftrightarrow\dfrac{x+2}{2x+1}=3\\ \Leftrightarrow6x+3=x+2\\ \Leftrightarrow5x+1=0\\ \Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)
\(c,\dfrac{1}{A}=\dfrac{2x+1}{x+2}=\dfrac{2x+4-3}{x+2}=\dfrac{2\left(x+2\right)-3}{x+2}=2-\dfrac{3}{x+2}\)
Để `1/A` là số nguyên thì `3/(x+2)` nguyên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng:
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1(ktm) | 1(ktm) |
Vậy \(x\in\left\{-5;-3\right\}\)
\(A=\frac{x+6}{x+2}=1+\frac{4}{x+2}\)
Vì\(x\in Z\Rightarrow x+2\in Z\)
Để \(A\in Z\Leftrightarrow\frac{4}{x+2}\in Z\Rightarrow x+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị:
x+2 | 1 | 1 | 2 | -2 | 4 | -4 |
x | -1 | -3 | 0 | -4 | 2 | -6 |
đkxđ | tm | tm | tm | tm | tm | tm |
Vậy với \(x\in\left\{-1;-3;0;-4;2;-6\right\}\)thì \(A\in Z\)
ĐKXĐ: \(x\ne\pm1\)
Ta có: \(A=\dfrac{x-1}{x^2-1}=\dfrac{1}{x+1}\)
Để \(A\in Z\Leftrightarrow\dfrac{1}{x+1}\in1\)
\(\Rightarrow x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) (tmđk)
Vậy để A nhận giá trị nguyên thì \(x=\left\{0;-2\right\}\)
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo).
\(A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\left(x\ne2;x\ne-2\right)\)
\(a,A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\)
\(=\left[\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\left[\dfrac{x^2+2x+12-x^2+2x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\dfrac{4x+12}{\left(x-2\right)\left(x+2\right)}:\dfrac{4}{x-2}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{4}\)
\(=\dfrac{x+3}{x+2}\)
\(b,x=-1\Rightarrow A=\dfrac{\left(-1\right)+3}{\left(-1\right)+2}=2\)
\(c,A=\dfrac{x+3}{x+2}=\dfrac{x+2+1}{x+2}=1+\dfrac{1}{x+2}\)
\(A\in Z\Leftrightarrow x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{-1;-3\right\}\) (thỏa mãn điều kiện)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
A nhận giá trị nguyên khi \(1+\frac{5}{\sqrt{x}-3}\) nguyên
\(\Leftrightarrow\frac{5}{\sqrt{x}-3}\in Z\Leftrightarrow5⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
ta có bảng sau:
bạn tự kết luận nhé
\(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\)
Để \(A\in Z\Rightarrow\dfrac{5}{\sqrt{x}-3}\in Z\Rightarrow5⋮\left(\sqrt{x}-3\right)\Rightarrow\sqrt{x}-3\inƯ\left(5\right)\)
Ta có bảng:
Vậy \(x\in\left\{4;16;64\right\}\)