K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2022

\(2x^2-2y^2+3xy+x+7y-3=8\)

\(\Leftrightarrow\left(2x^2-xy+3x\right)+\left(4xy-2y^2+6y\right)-\left(2x-y+3\right)=8\)

\(\Leftrightarrow x\left(2x-y+3\right)+2y\left(2x-y+3\right)-\left(2x-y+3\right)=8\)

\(\Leftrightarrow\left(x+2y-1\right)\left(2x-y+3\right)=8\)

Phương trình ước số cơ bản, bạn tự lập bảng giá trị

4 tháng 3 2022

Ta có: 2x2+3xy-2y2=7

⇒2x2−xy+4xy−2y2=7⇒2x2−xy+4xy−2y2=7

⇒x(2x−y)+2y(2x−y)=7⇒x(2x−y)+2y(2x−y)=7

⇒(2x−y)(x+2y)=7⇒(2x−y)(x+2y)=7

Ta có: 2x-y, x+2y là nghiệm của 7

Nếu 2x-y=7, x+2y=1

⇔2(2x−y)+x+2y=15⇔2(2x−y)+x+2y=15

⇔5x=15⇔x=3,y=−1(TM)⇔5x=15⇔x=3,y=−1(TM)

Tương tự:

Nếu 2x-y=1,x+2y=7⇔x=1,8;y=2,6(KTM)⇔x=1,8;y=2,6(KTM)

Nếu 2x-y=-1,x+2y=-7⇔x=−1,8;y=−2,6(KTM)⇔x=−1,8;y=−2,6(KTM)

Nếu 2x-y=-7 , x+2y=-1⇔x=−3,y=1(TM)⇔x=−3,y=1(TM)

Vậy (x;y) là (3;-1);(-3;1)

26 tháng 9 2021

\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)

14 tháng 8 2023

a) \(2x^2-3xy-2y^2=2\)

\(\Rightarrow2x^2+xy-4xy-2y^2=2\)

\(\Rightarrow x\left(2x+y\right)-2y\left(2x+y\right)=2\)

\(\Rightarrow\left(2x+y\right)\left(x-2y\right)=2\)

\(\Rightarrow\left(2x+y\right);\left(x-2y\right)\in\left\{-1;1;-2;2\right\}\)

Ta giải các hệ phương trình sau với x;y nguyên 

1) \(\left\{{}\begin{matrix}2x+y=-1\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-2\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}2x+y=1\\x-2y=2\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}4x+2y=2\\x-2y=2\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}5x=4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}2x+y=-2\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-4\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

4)  \(\left\{{}\begin{matrix}2x+y=2\\x-2y=1\end{matrix}\right.\) \(\left\{{}\begin{matrix}4x+2y=4\\x-2y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;1\right)\right\}\)

14 tháng 8 2023

b) \(xy-y+x=9\)

\(\Rightarrow y\left(x-1\right)+x-1+1=9\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=8\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-9\right);\left(2;7\right);\left(-1;-5\right);\left(3;3\right);\left(-3;-3\right);\left(5;1\right);\left(-7;-2\right);\left(9;0\right)\right\}\)

13 tháng 8 2023

\(a,xy-x-y=2\\ x\left(y-1\right)-y=2\\ x\left(y-1\right)-y+1=2+1\\ x\left(y-1\right)-\left(y-1\right)=3\\ \left(y-1\right)\left(x-1\right)=3\\ Th1:x-1=-1=>x=0\\ y-1=-3=>y=-2\\ Th2:x-1=-3 =>x=-2\\ y-1=-1=> y=0\\ Th3:x-1=3=> x=4\\ y-1=1=>y=2\\ Th4:x-1=1=>x=2\\ y-1=3=>y=4\)

Vậy......

\(b,2x^2+3xy-2y^2=7\\ 2x^2+\left(4xy-xy\right)-2y^2=7\\ x\left(2x-y\right)+2y\left(2x-y\right)=7\\ \left(2x-y\right)\cdot\left(x+2y\right)=7\)

Nếu 2x-y=1; x+2y = 7

=> 2(2x-y) + x + 2y = 9

=> 4x - 2y + x +2y = 9

=> (4x+x) + (2y-2y) = 9

=> 5x + 0 = 9 

=> x = 9/5 (ktm)

Nếu 2x-y=7; x+2y = 1

=> 2(2x-y) + x+ 2y = 15

=> 4x - 2y + x +2y =15

=> (4x +x)+ (2y-2y) =15

=> 5x +0 =15

=> x= 3 (tm)

=> y= -1 (Tm)

Nếu  2x-y=-7; x+2y = -1

=> 2(2x-y) + x+ 2y = -15

=> 4x - 2y + x +2y =-15

=> (4x +x)+ (2y-2y) =-15

=> 5x +0 =-15

=> x= -3 (tm)

=> y= 1 (tm)

Nếu 2x-y=-1 ; x+2y = -7

=> 2(2x-y) + x+ 2y = -9

=> 4x - 2y + x +2y = -9

=> (4x +x)+ (2y-2y) =-9

=> 5x +0 =-9

=> x= -9/5 (ktm)

=> y= -1

Vậy.........

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

29 tháng 8 2023

a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)

\(P=3\left(x+y\right)^2-2.5-100\)

\(P=3.5^2-110\)

\(P=-35\)

b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)

\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)

\(Q=5^3-2.5^2+25\)

\(Q=100\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2023

Đoạn:

2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?

Bạn viết lại đề để mọi người hiểu hơn nhé.

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

4 tháng 4 2022

\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

AD t/c của dãy tỉ số bằng nhâu ta có

\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)

\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)

4 tháng 4 2022

lần đầu thấy tự làm nha:))

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Biểu thức này không có giá trị cụ thể. Bạn xem lại đề.