Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow2x^2-xy+4xy-2y^2=7\)
\(\Leftrightarrow x\left(2x-y\right)+2y\left(2x-y\right)\)
\(\Leftrightarrow\left(x+2y\right)\left(2x-y\right)=7\)
Nếu 2x - y = 7 và x + 2y = 1 thì:
\(2\left(2x-y\right)+x+2y=15\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3;y=1\)( thỏa mãn )
Nếu 2x - y = 1 và x + 2y = 7 thì:
\(2\left(2x-y\right)+x+2y=9\)
\(\Leftrightarrow5x=9\Leftrightarrow x=\frac{9}{5}\)( loại )
Nếu 2x - y = -7 và x + 2y = -1 thì:
\(2\left(2x-y\right)+x+2y=-15\)
\(\Leftrightarrow5x=-15\)
\(\Leftrightarrow x=-3;y=1\)( thỏa mãn )
Nếu 2x - y = -1 và x + 2y = -7
\(\Leftrightarrow2\left(2x-y\right)+x+2y=-9\)
\(\Leftrightarrow5x=-9\Leftrightarrow x=\frac{-9}{5}\)( loại )
Vì \(\left(x+2y-4\right)^2\ge0\) với mọi x,y
\(\left(2x-3y-1\right)^2\ge0\) với mọi x,y
=>\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
=>\(\int^{x+2y-4=0}_{2x-3y-1=0}<=>\int^{x+2y=4}_{2x-3y=1}<=>\int^{x=2}_{y=1}\)
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn.
`Answer:`
Ta có lý thuyết sau: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác `0` và có cùng phần biến. Các số khác `0` được coi là những đơn thức đồng dạng.
Vậy đơn thức `-1/2 xy^2` đồng dạng với đơn thức `xy^2`
`=>` Chọn C.
\(C.xy^2\)
\(\text{Lưu ý:Hai đơn thúc đồng dạng là hai đơn thúc có hệ số khác 0 và có cùng phần biến.}\)
\(\text{Lí thuyết:SKG/33 tập 2}\)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
a)\(\left(2x^2+4x^2\right)+\left[\left(-5xy\right)+xy\right]+\left(3y^2-2y^2\right)=6x^2-4xy+y^2\)
b)\(2x^2-5xy+3y^2+4x^2+xy-2y^2+2x^2+4xy-5y^2\)
=\(\left(2x^2+4x^2+2x^2\right)+\left(-5xy+xy+4xy\right)+\left(3y^2-2y^2-5y^2\right)\)
=\(8x^2-4y^2\)
\(a,xy-x-y=2\\ x\left(y-1\right)-y=2\\ x\left(y-1\right)-y+1=2+1\\ x\left(y-1\right)-\left(y-1\right)=3\\ \left(y-1\right)\left(x-1\right)=3\\ Th1:x-1=-1=>x=0\\ y-1=-3=>y=-2\\ Th2:x-1=-3 =>x=-2\\ y-1=-1=> y=0\\ Th3:x-1=3=> x=4\\ y-1=1=>y=2\\ Th4:x-1=1=>x=2\\ y-1=3=>y=4\)
Vậy......
\(b,2x^2+3xy-2y^2=7\\ 2x^2+\left(4xy-xy\right)-2y^2=7\\ x\left(2x-y\right)+2y\left(2x-y\right)=7\\ \left(2x-y\right)\cdot\left(x+2y\right)=7\)
Nếu 2x-y=1; x+2y = 7
=> 2(2x-y) + x + 2y = 9
=> 4x - 2y + x +2y = 9
=> (4x+x) + (2y-2y) = 9
=> 5x + 0 = 9
=> x = 9/5 (ktm)
Nếu 2x-y=7; x+2y = 1
=> 2(2x-y) + x+ 2y = 15
=> 4x - 2y + x +2y =15
=> (4x +x)+ (2y-2y) =15
=> 5x +0 =15
=> x= 3 (tm)
=> y= -1 (Tm)
Nếu 2x-y=-7; x+2y = -1
=> 2(2x-y) + x+ 2y = -15
=> 4x - 2y + x +2y =-15
=> (4x +x)+ (2y-2y) =-15
=> 5x +0 =-15
=> x= -3 (tm)
=> y= 1 (tm)
Nếu 2x-y=-1 ; x+2y = -7
=> 2(2x-y) + x+ 2y = -9
=> 4x - 2y + x +2y = -9
=> (4x +x)+ (2y-2y) =-9
=> 5x +0 =-9
=> x= -9/5 (ktm)
=> y= -1
Vậy.........