cho m/n=1+1/2+1/3+.....+1/1998 với m, n là số tự nhiên
chứng minh rằng m chia hết cho 1999, nêu bài toán tổng quát
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m/n=1+1/2+1/3+...+1/1998
=(1+1/1998)+(1/2+1/1997)+...+(1/999+1/1000)
=1999/1.1998+1999/2.1997+...1999/999.100
Quy đồng phân số,ta chọn MC:1.2.3...1997.1998
Gọi các thừa số phụ tương ứng là a1,a2, ...a999
m/n=1999(a1+a2+a3+...+a999)/1.2.3....1997.1998
Do 1999 là số nguyên tố . Sau khi rút gọn vẫn còn thừa số 1999 =>m chia hết 1999
m/n=1+1/2+1/3+...+1/1998
=>m/n=(1+1/1998)+(1/2+1/1997)+...+(1/999+1/1000)
=>m/n=1999/1.1998+1999/2.19997+...+1999/999.1000
Quy đồng mẫu số các phân số ta chọn mẫu số chung là: 2.3.4.....1997.1998
gọi các thừa số phụ lần lượt là:k1;k2;k3;.....;k999
ta có m/n=1999.(k1+k2+k3+...+k999)/2.3.4.....1997.1998
ta thấy m là số chia hết cho 1999 mà 1999 là số nguyên tố và mẫu số không chứa thừa số nguyên tố 1999 nên khi rút gọn phân số đến tối giản thì m vẫn luôn chia hết cho 1999
Ta có : \(\frac{1}{a}+\frac{1}{a+1}=\frac{a+1+a}{a\left(a+1\right)}\)= \(\frac{2a+1}{a\left(a+1\right)}\)
m/n = ( 1 + \(\frac{1}{1998}\)) + ( \(\frac{1}{2}+\frac{1}{1997}\)) + ( \(\frac{1}{3}+\frac{1}{1996}\)) +......+ ( \(\frac{1}{999}+\frac{1}{1000}\))
m/n = \(\frac{1999}{1998}+\frac{1999}{1997x2}+\frac{1999}{1996x3}+.....+\frac{1999}{999x1000}\)
m/n = 1999 x (\(\frac{1}{1998}+\frac{1}{1997x2}+\frac{1}{1996x3}+.....+\frac{1}{999x1000}\))
=> m chia hết cho 1999
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1996}+\frac{1}{1997}+\frac{1}{1998}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)
\(=\frac{1999}{1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+...+\frac{1999}{999.1000}=1999.\left(\frac{1}{1998}+\frac{1}{2.1997}+...+\frac{1}{999.1000}\right)⋮1999\)
\(\Rightarrow\frac{m}{n}⋮1999\Rightarrow m⋮1999\)
BTTQ: Nếu \(\frac{m}{n}=1+\frac{1}{2}+...+\frac{1}{k}\left(k\inℕ^∗\right)\)thì m\(⋮\left(k+1\right)\)
Ta có : \(\frac{m}{n}\)= \(1+\frac{1}{2}+...+\frac{1}{1998}\)
= ( 1 + 1/1998 ) + ( 1/2 + 1/1997 ) + ... + ( 1/99 + 1/1000 )
= \(\frac{1999}{1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.1000}\)
= \(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)( a1 ; a2 ; ... là các thừa số phụ tương ứng của các phân số )
= \(\frac{1999.\left(a_1+a_2+...+a_{1999}\right)}{1.2.3....1998}\)=> tử \(⋮\)1999
Vì 1999 là số nguyên tố mà n k có thừa số 1999 => n ko chia hết cho 1999 . Dù rút gọn về phân số tối giản thì tử \(⋮\)1999 hay m \(⋮\)1999
Do đó dạng tổng quát là :
m/n = 1 + 1/2 + 1/3 + ... + 1/k => m \(⋮\)k ( k thuộc N* )
Ta có:
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1998}\)
\(=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+...+\left(\frac{1}{999}+\frac{1}{1000}\right)\)
\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+...+\frac{1999}{999.100}\)
Quy đồng phân số, ta chọn Mẫu chung la : 1 x 2 x 3 x 4 x ... x 1997 x 1998
Gọi các thừa số phụ tương ứng là a1, a2, a3, ..., a999
\(\frac{m}{n}=\frac{1999\left(a1+a2+a3+...+a999\right)}{1.2.3.4.....1997.1998}\)
Do 1999 là số nguyên tố. Sau khi rút gọn vẫn còn thừa số 1999 suy ra m chia hết cho 1999