Cho tam giác ABC cân ở A. Vẽ AH \(\perp\) BC (H \(\varepsilon\) BC). Chứng minh rằng:
a) Tam giác AHB = tam giác AHC
b) H là chung điểm của BC
c) AH là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
`\color{blue}\text {#DuyNam}`
`a,` Vì Tam giác `ABC` cân `-> AB=AC,`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `ABH` và Tam giác `ACH` có:
\(\widehat{B}=\widehat{C}\)
`AB = AC`
`=>` Tam giác `ABH =` Tam giác `ACH (ch-gn)`
`-> HB=HC (2` cạnh tương ứng `)`
`-> H` là trung điểm của `BC`
`b,` Vì Tam giác `ABH =` Tam giác `ACH (a)`
`->`\(\widehat{BAH}=\widehat{CAH}\) `(2` góc tương ứng `)`
`-> AH` là tia phân giác của \(\widehat{BAC}\)
`@` `\text {Ans}`
`\downarrow`
`a,`
Vì `\Delta ABC` cân tại A
`-> \text {AB = AC,}` $\widehat {B} = \widehat {C}$
Vì `\text {AH}` là đường cao
`-> \text {AH} \bot \text {BC}`
`->` $\widehat {AHB} = \widehat {AHC} = 90^0$
Xét `2 \Delta` vuông `AHB` và `AHC`:
`\text {AB = AC}`
$\widehat {B} = \widehat {C}$
`=> \Delta AHB = \Delta AHC (ch-gn)`
`b,`
Vì `\Delta AHB = \Delta AHC (a)`
`-> \text {HB = HC (2 cạnh tương ứng)}`
`-> \text {H là trung điểm của BC}`
Hoặc bạn có thể dùng cách này (nếu đã học về tính chất của `\Delta` cân đối với các đường trong `\Delta`)
Vì `\Delta ABC` cân tại A.
Mà `\text {AH}` là đường cao
`@` Theo tính chất của `\Delta` cân với các đường trong `\Delta`
`-> \text {AH cũng là đường trung tuyến}`
`-> \text {H là trung điểm của BC}`
`c,`
Vì `\Delta AHB = \Delta AHC (a)`
`->` $\widehat {BAH} = \widehat {CAH} (\text {2 góc tương ứng})$
`-> \text {AH là tia phân giác của} \Delta ABC`
Hoặc bạn có thể dùng cách này (nếu đã học về tính chất của `\Delta` cân đối với các đường trong `\Delta`)
Vì `\Delta ABC` cân tại A.
Mà `\text {AH}` là đường cao
`@` Theo tính chất của `\Delta` cân với các đường trong `\Delta`
`-> \text {AH cũng là đường phân giác}`
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: \(\widehat{BAC}=70^0\)
nên \(\widehat{BAH}=35^0\)
=>\(\widehat{B}=55^0\)
=>BH<AH
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
hay ΔADE cân tại A
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=3cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+3^2=5^2\)
=>\(HA^2=25-9=16\)
=>HA=4(cm)
Ta có hình vẽ:
Ta có: AC = AB và góc CAH = BAH (tính chất của Δ cân)
Cách 1: Xét Δ AHB và Δ AHC có:
AB = AC (gt)
BAH = CAH (chứng minh trên)
AH là cạnh chung
Do đó, Δ AHB = Δ AHC (c.g.c) (đpcm)
Cách 2: Vì AH⊥BC⇒AHC=AHB=90oAH⊥BC⇒AHC=AHB=90o
Xét Δ AHB và Δ AHC có:
CAH = BAH (chứng minh trên)
AB = AC (gt)
AHC = AHB (chứng minh trên)
Do đó, Δ AHB = Δ AHC (g.c.g) (đpcm)
bạn ơi cái này là tam giác vuông mà