K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

Mọi người giải hộ mk với

15 tháng 6 2016

?o?n th?ng f: ?o?n th?ng [B, A] ?o?n th?ng h: ?o?n th?ng [B, C] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng H_1: ?o?n th?ng [A, H] ?o?n th?ng l: ?o?n th?ng [A, E] ?o?n th?ng m: ?o?n th?ng [C, E] B = (1.42, 5.83) B = (1.42, 5.83) B = (1.42, 5.83) A = (1.46, -3.04) A = (1.46, -3.04) A = (1.46, -3.04) ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m H: ?i?m tr�n h ?i?m H: ?i?m tr�n h ?i?m H: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m D: ?i?m tr�n h ?i?m E: Giao ?i?m c?a j, k ?i?m E: Giao ?i?m c?a j, k ?i?m E: Giao ?i?m c?a j, k

a. Ta thấy \(S\Delta ABC=\frac{1}{2}AB.AB=\frac{1}{2}BC.AH\Rightarrow AH=24\)

Vậy \(BH=\sqrt{AB^2-AH^2}=18\)

b. Xét tam giác ABC và EDC có:

góc A = góc E vuông

góc ABC= góc EDC (cùng bằng góc BDA)

Vậy \(\Delta ABC\sim\Delta EDC\left(g-g\right)\) 

Vậy \(\frac{AB}{ED}=\frac{AC}{EC}\Rightarrow AB.EC=ED.AC\)

c. Ta thấy \(\frac{S\Delta EDC}{S\Delta ABC}=\left(\frac{DC}{BC}\right)^2=\left(\frac{50-18.2}{50}\right)^2=\frac{49}{625}\)

ta tính đc diện tích ABC từ đó suy ra diện tích EDC.

15 tháng 8 2020

a)

Có:    \(AH^2=HB.HC\left(HTL\right)\)

=>     \(16=3HC\Rightarrow HC=\frac{16}{3}\)

Lần lượt áp dụng định lí PYTAGO ta được:   

\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)

b) Có:  BH và DI cùng vuông góc với EI 

=> BH // DI

=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:

=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)

Mà:    \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)

=>   \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)

=>   \(AH=HI\)

=>    \(DI=6;HI=4\)

MÀ:    \(EA=AH\left(gt\right)=4\)

=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)

Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)

=> Diện tích tam giác HCE    \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)

Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa

4 tháng 8 2021

Cho mình xin câu D thoi ạ

24 tháng 10 2021

a: Xét (I) có 

ΔAHC nội tiếp đường tròn

AC là đường kính

Do đó: ΔAHC vuông tại H

hay AH\(\perp\)BC

31 tháng 10 2019

A B C H D I E

a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)

\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)

\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)

b) HB // DI ( cùng vuông góc AI )

\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)

\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)

\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)

\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)

c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)

d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)

18 tháng 12 2021

Đáp án bài? 

Bài làm

a) Xét tam giác ABH vuông tại H có:

Theo định lí Pytago có:

AB2 = AH2 + HB2 

hay AB2 = 62 + 42 

=> AB2 = 36 + 16

=> AB2 = 52

=> AB = \(2\sqrt{13}\) \(\approx\)7,2 ( cm )

b) Xét tam giác AHC vuông ở H có:

Theo định lí Pytago có: 

AC2 = AH2 + HC2 

Hay AC2 = 62 + 92 

=> AC2 = 36 + 81

=> AC2 = 117

=> AC = \(3\sqrt{13}\)\(\approx\)10,8 ( cm )

Ta có: BC = 9 + 4 = 13

=> BC2 = 132 = 169 

AB2 + AC2 = \(\left(2\sqrt{13}\right)^2+\left(3\sqrt{13}\right)^2=52+117=169\)

=> BC2 = AB2 + AC2 

=> Tam giác ABC vuông tại A ( Theo định lí Pytago đảo )

c) Vì DE song song với AH

Theo định lí Thalets có:

\(\frac{CH}{HD}=\frac{AC}{AE}\)

hay \(\frac{9}{6}=\frac{3\sqrt{13}}{AE}\)

=> AE = \(\frac{6.3\sqrt{13}}{9}=\frac{18\sqrt{13}}{9}=2\sqrt{13}\)

Mà AB = \(2\sqrt{13}\)

=> AE = AB ( = \(2\sqrt{13}\)) ( đpcm )

30 tháng 6 2021

\(\dfrac{1}{2}\) AB.AB là sao ạ??