tìm GTNN của các biểu thức sau
a) A=(3x+1)^2+15
b)B=I2x-10I+3
c)C=Ix+5I-3
d)D=3.(x+1)^2-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: |x-1|<1/2
=>x-1>-1/2 và x-1<1/2
=>x>1/2 và x<3/2
=>1/2<x<3/2
b: Ta có: |2x+5|>5/2
=>2x+5>5/2 hoặc 2x+5<-5/2
=>2x>-5/2 hoặc 2x<-15/2
=>x>-5/4 hoặc x<-15/4
c: Ta có: |x-5|<3
=>x-5>-3 và x-5<3
=>x>2 và x<8
=>2<x<8
mà x là số nguyên
nên \(x\in\left\{3;4;5;6;7\right\}\)
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
a, \(A=\left(3x+1\right)^2+15\ge15\)
Dấu ''='' xảy ra khi x = -1/3
b, \(B=\left|2x-10\right|+3\ge3\)
Dấu ''='' xảy ra kho x = 5
c, \(C=\left|x+5\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -5
d, \(D=3\left(x+1\right)^2-2\ge-2\)
Dấu ''='' xảy ra khi x = -1
a, \(A=\left(3x+1\right)^2+15\)
Với mọi x ta có \(\left(3x+1\right)^2\ge0\)Do đó \(\left(3x+1\right)^2+15\ge15\)
GTNN của A = 15 khi và chỉ khi \(\left(3x+1\right)^2=0\Leftrightarrow3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\frac{1}{3}\)
b, \(B=\left|2x-10\right|+3\)
Với mọi x, ta có :
\(\left|2x-10\right|\ge0\)do đó \(\left|2x-10\right|+3\ge3\)
GTNN của B = 3 khi và chỉ khi \(2x-10=0\Leftrightarrow x=5\)