Em muốn hỏi câu này ạ (1+a^2.b^2)(4/a^2 + 3.b^2) lớn hơn hoặc bằng 8 căng 3 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a - b = 8 (1)
Tỉ số của a và b = \(\dfrac{3}{2}\)
=> \(\dfrac{a}{b}=\dfrac{3}{2}\)
=> \(a=\dfrac{3}{2}.b\)
Thay a = \(\dfrac{3}{2}.b\) vào (1), ta có:
\(\dfrac{3}{2}b-b=8\)
<=> \(\dfrac{1}{2}b=8< =>b=16\)
<=> a = 24
a)Ta có: \(\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)
\(\Leftrightarrow\dfrac{3x+9+x+1}{3\left(x+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1>0\\4x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le-\dfrac{5}{2}\end{matrix}\right.\)
b) Ta có: \(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)
\(\Leftrightarrow\dfrac{3x+6+x+3}{3\left(x+3\right)}\le0\)
\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+9>0\\4x+9\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow-3< x\le-\dfrac{9}{4}\)
a)\(\dfrac{x+3}{x+1}\ge-\dfrac{1}{3}\left(x\ne-1\right)\)
\(\Leftrightarrow\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)
\(\Leftrightarrow\dfrac{3x+9+x+1}{3x+3}\ge0\)
\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+10\ge0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+10\le0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{5}{2}\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{-5}{2}\\x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le\dfrac{-5}{2}\end{matrix}\right.\)
b) \(\dfrac{x+2}{x+3}\le-\dfrac{1}{3}\left(x\ne-3\right)\)
\(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)
\(\Leftrightarrow\dfrac{3x+6+x+3}{3x+9}\le0\)
\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+9\ge0\\3x+9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+9\le0\\3x+9>0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{9}{4}\\x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{9}{4}\\x>-3\end{matrix}\right.\end{matrix}\right.\)
TH1: loại
TH2: TM
Vậy no của BPT là :\(-\dfrac{9}{4}\ge x>-3\)
chúc bạn học tốt
\(\frac{3}{3\sqrt{2}+1}=\frac{3\left(3\sqrt{2}-1\right)}{\left(3\sqrt{2}+1\right)\left(3\sqrt{2}-1\right)}=\frac{9\sqrt{2}-3}{\left(18-1\right)}=\frac{9\sqrt{2}-1}{17}\)
\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)
\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2\ge2a+2b\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng \(\forall a;b\) )
Vậy \(a^2+b^2+2\ge2\left(a+b\right)\)
ap dung bdt am gm
\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)
\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)
tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)
\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)
tiep tuc ap dung bat cauchy-schwarz dang engel ta co
\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)
dau = xay ra \(\Leftrightarrow a=b=c=1\)
Em không nêu ra yêu cầu và các điều kiện liên quan của đề bài thì làm sao mn giúp em được?
\(\left(1+a^2b^2\right)\left(\dfrac{4}{a^2}+\dfrac{3}{b^2}\right)\ge2\sqrt{a^2b^2}.2\sqrt{\dfrac{12}{a^2b^2}}=8\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi \(\left(a^2;b^2\right)=\left(\dfrac{2}{\sqrt{3}};\dfrac{\sqrt{3}}{2}\right)\)