Chứng minh rằng: \(x^{8n}+x^{4n}+1\) chia hết cho \(x^{2n}+x^n+1\)
Ai làm đúng và nhanh nhất mình tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy
Ta có: \(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)=> \(x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
Những đứa viết ''chtt'' là những đứa học dốt,lười suy nghĩ,chỉ biết ăn hôi bài người khác để kiếm tick
=>đó là những đứa nhục nhã,tham lam,lười biếng.
\(\text{Ta có :}\)
\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
\(\text{Ta lại có :}\)
\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)
\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)
\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)
\(x^{8n}+x^{4n}+1=\left(x^{4n}\right)^2+2x^{4n}+1-\left(x^{2n}\right)^2\)
=\(\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
phân tích như vậy tương tự với \(x^{4n}+x^{2n}+1=\left(x^{2n}+x^n+1\right)\left(x^{2n}-x^n+1\right)\)
Cái đó chia hết cho x2n+xn+1 => x8n+x4n+1 chia hết cho .................
mhink thấy tên gì kệ nó làm ............