K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Ta có: 4x-4xy-y=4

<=> 4x(1-y)-y-4=0

<=>4x(1-y)+(1-y)-5=0

<=>(1-y)(4x+1)=5

Vì \(x;y\in Z\Rightarrow1-y,4x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

4x+11-15-5
1-y5-51-1
x0-1/21-1,5
y-4602

Vì x, y là các số nguyên nên \(\left(x;y\right)\in\left\{\left(0;4\right),\left(1;0\right)\right\}\)

Vậy...

\(\frac{1}{x}-\frac{3}{y}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x}=\frac{1}{8}+\frac{3}{y}\)

\(\Leftrightarrow\frac{1}{x}=\frac{y}{8y}+\frac{24}{8y}=\frac{y+24}{8y}\)

\(\Leftrightarrow8y=x\left(y+24\right)\)

Dễ rồi lập bảng giải nốt e nhé ! 

30 tháng 6 2020

Bài này mình đánh bị lỗi nha

17 tháng 4 2018

\(x=3;y=7\)

3 và 7 đều là số nguyên tố

k nhé

17 tháng 4 2018

Cảm ơn bạn nhiều nhưng mình cần cả lời giải!

15 tháng 10 2017

\(x-4xy+y=0\Leftrightarrow4x-16xy+4y=0\)

\(\Leftrightarrow4x-4y\left(4x-1\right)=0\)

\(\Leftrightarrow4x-1-4y\left(4x-1\right)=-1\)

\(\Leftrightarrow\left(4x-1\right)\left(1-4y\right)=-1\)(1)

Ta có \(-1=1.\left(-1\right)\) để pt (1) có nghiệm nghuyên khi 4x - 1 và 1 - 4y là ước nguyên của - 1

+) Nếu \(4x-1=1\) thì \(1-4y=-1\) => \(x=\frac{1}{2}\) thì \(y=\frac{1}{2}\) (loại)

+) Nếu \(4x-1=-1\) thì \(1-4y=1\) => x = 0 thì y = 0 (TM)

Vậy (x;y) = (0;0)

19 tháng 1 2019

                           Giải

\(2x-5x+4xy=6\)

\(\Leftrightarrow x\left(2-5+4y\right)=6\)

\(\Leftrightarrow x\left(4y-3\right)=6\)

\(\Leftrightarrow x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

\(x\)\(-6\)\(-3\)\(-2\)\(-1\)\(1\)\(2\)\(3\)\(6\)
\(4y-3\)\(-1\)\(-2\)\(-3\)\(-6\)\(6\)\(3\)\(2\)\(1\)
\(y\)  \(0\)    \(1\)

Vậy \(x,y\in\left\{\left(-2,0\right);\left(6,1\right)\right\}\)

=>x^2+4xy+4y^2+y^2-2y<0

=>y^2-2y<0

=>0<y<2

=>y=1 và \(x\in Z\)

12 tháng 2 2023

\(3x^2+y^2+4xy=5x+2y+1\)

\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)

Coi phương trình (1) là phương trình ẩn x tham số y, ta có:

\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)

\(=16y^2-40y+25-12y^2+24y+12\)

\(=4y^2-16y+37\)

Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).

\(\Rightarrow4y^2-16y+16+21=a^2\)

\(\Rightarrow a^2-\left(2y-4\right)^2=21\)

\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)

\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+413
a+2y-4217
a115
y7

3

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+4217
a+2y-413
a115
y-3(loại vì y>0)1

Với a=11, y=7. Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)

\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)

Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)

\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)

Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)

\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)

Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)

 

12 tháng 2 2023

cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn