có 2 bài này khó nhờ giải gi
1.xy-x+2y=3
2.1/x+1/y=1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)
ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)
Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).
Trường hợp 1: \(x-2y=1\)
Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)
Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)
Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)
Tới đây chắc bạn giải được rồi đó.
Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).
Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).
Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).
Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\), \(x_2=2y-2-3=2y-5\).
Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).
Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.
1.xy - x + 2y = 3
x . ( y - 1 ) = 3 - 2y
x . ( y - 1 ) = 3 - 2y + 2 - 2
x . ( y - 1 ) = 1 - ( 2y - 2)
x . ( y - 1 ) = 1 - 2 . ( y - 1 )
x . ( y - 1 ) + 2 . ( y - 1 ) = 1
( y - 1 ) . ( x + 2 ) = 1
=> y - 1 = 1, x + 2 = 1 hoặc y - 1 = -1, x + 2 = -1
=> y = 2, x = -1 hoặc y = 0, x = -3
Vậy y = 2, x = -1 hoặc y = 0, x = -3
2. 1/x + 1/y = 1/2
y/xy + x/xy = 1/2
x+y/xy = 1/2
=> 2.(x+y) = xy
=> 2x + 2y = xy
=> 2y = xy - 2x
=> 2y = x.(y-2)
=> 2y chia hết cho y-2
=> 2y-4+4 chia hết cho y-2
=> 2.(y-2)+4chia hết cho y-2
Vì 2.(y-2) chia hết cho y-2 nên 4 chia hết cho y-2
=> y-2 thuộc { 1 ; -1 ; 2 ; -2 ; 4 ; -4}
=> y thuộc { 3 ; 1 ; 4 ; 0 ; 6 ; -2}
Mà y khác 0 nên y thuộc { 3 ; 1 ; 4 ; 6 ; -2}
+ Với y = 3 thì 1/x = 1/2 - 1/3 = 1/6 => x = 6
+ Với y = 1 thì 1/x = 1/2 - 1/1 = 1/-2 => x = -2
+ Với y = 4 thì 1/x = 1/2 - 1/4 = 1/4 => x = 4
+ Với y = 6 thì 1/x = 1/2 - 1/6 = 1/3 => x = 3
+ Với y = -2 thì 1/x = 1/2 - 1/-2 = 1/1 => x = 1