K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)

ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)

Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).

Trường hợp 1: \(x-2y=1\)

Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)

Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)

Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)

Tới đây chắc bạn giải được rồi đó.

19 tháng 12 2016

Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).

Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).

Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).

Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\)\(x_2=2y-2-3=2y-5\).

Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).

Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

14 tháng 6 2020

 Đó chính  viết tắt cho cụm từ “HNUE Philology Times”. Lấy truyền thông làm mảnh đất hoạt động chính yếu của mình, HPT từ một nhóm bạn nhỏ nay đã trở thành một tập thể gắn kết, nhiệt tình. Tuy ra đời chưa lâu, nhưng HPT đã để lại những dấu ấn rất riêng của mình trong ngôi nhà Văn Khoa

31 tháng 3 2017

Mình cứ đắn đo câu này mãi. Chắc là bạn chép sai đề. M tự ý sửa đề nếu không phải thì thôi nhé. Sửa đề:

\(\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\sqrt{3}+xy=-1\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+3xy-\left(x+y\right)\sqrt{3}=-1\left(1\right)\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\left(2\right)\end{cases}}\)

Lấy (2) - (1) ta được

\(x\left(1+\sqrt{3}\right)+y\left(2+\sqrt{3}\right)-3xy=\frac{3\sqrt{3}+5}{3}\)

Đặt \(\hept{\begin{cases}x\left(1+\sqrt{3}\right)=a\\y\left(2+\sqrt{3}\right)=b\\3\sqrt{3}+5=c\end{cases}}\)

\(\Rightarrow3xy=\frac{3ab}{c}\)từ đây ta có 

\(\Leftrightarrow a+b-\frac{3ab}{c}=\frac{c}{3}\)

\(\Leftrightarrow3ac+3bc-9ab-c^2=0\)

 \(\Leftrightarrow\left(3a-c\right)\left(c-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}c=3a\\c=3b\end{cases}}\)

Tới đây thì đơn giản rồi nhé

1 tháng 4 2017

Đã đặt \(c=3\sqrt{3}+5\) mà sao đăng lên là nó bị mất.

Cô Vân ơi sửa lỗi này đi cô. Cứ dùng ký hiệu hệ phương trình 3 ẩn thì nó bị mất đi 1 phương trình ah.

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)