x^3-4/25x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
hay \(x\in\left\{-2;1\right\}\)
b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)
hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)
\(a,\Leftrightarrow4x^2-24x+36-4x^2+1=10\\ \Leftrightarrow-24x=-27\Leftrightarrow x=\dfrac{9}{8}\\ b,\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,4.\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4.\left(x^2-6x+9\right)-\left(2x^2\right)-1^2=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+27=10\)
\(\Leftrightarrow-24x=-27\)
\(\Leftrightarrow x=\dfrac{27}{24}\)
Vậy \(x=\dfrac{27}{24}\)
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
1) 2x4 - 9x3 + 14x2 - 9x + 2 = 0
<=> (2x4 - 4x3) - (5x3 - 10x2) + (4x2 - 8x) - (x - 2) = 0
<=> 2x3(x - 2) - 5x2(x - 2) + 4x(x - 2) - (x - 2) = 0
<=> (2x3 - 5x2 + 4x - 1)(x - 2) = 0
<=> [(2x3 - 2x2) - (3x2 - 3x) + (x - 1)](x - 2) = 0
<=> [2x2(x - 1) - 3x(x - 1) + (x - 1)](x - 2) = 0
<=> (2x2 - 2x - x + 1)(x - 1)(x - 2) = 0
<=> (2x - 1)(x - 1)2(x - 2) = 0
<=> 2x - 1=0
hoặc x - 1 = 0
hoặc x - 2 = 0
<=> x = 1/2
hoặc x = 1
hoặc x = 2
Vậy S = {1/2; 1; 2}
a) 9-64x^2=0
=> 64x^2 = 8
=> \(x^2=\frac{8}{64}=\frac{1}{8}\)
=> \(x=\frac{1}{\sqrt{8}}\)
b ) 25x^2 - 3 = 0
=> 25x^2 = 3
=> \(x^2=\frac{3}{25}\)
=> \(x=\frac{\sqrt{3}}{5}\)
C) 7 - 16x^2 =0
=> 16x^2 = 7
=> \(x^2=\frac{7}{16}\)
=> \(x=\frac{\sqrt{7}}{4}\)
d) 4x^2 - (x-4)^2 = 0
=> 4x^2 - x^2 + 8x - 16 =0
=> 3x^2 + 8x -16 = 0
=> ( 3x^2 + 12x ) - ( 4x +16 ) = 0
=> 3x( x + 4 ) - 4( x + 4 ) = 0
=>( x + 4 )( 3x - 4 ) = 0
=> \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)
e) ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0
=> ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 ) = 0
=> ( 5x -1 ) ( x + 9 ) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)
Trả lời:
a, \(9-64x^2=0\)
\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)
Vậy x = 3/8; x = - 3/8 là nghiệm của pt.
b, \(25x^2-3=0\)
\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{3}}{5}\)
c, \(7-16x^2=0\)
\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{7}}{4}\)
d, \(4x^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = - 4; x = 4/3 là nghiệm của pt.
e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = - 9; x = 1/5 là nghiệm của pt.
\(6x^4+25x^3+12x^2-25x+6=0.\)
\(\Leftrightarrow\left(2x^2+x-2\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)\left(x+3\right)\left(3x-1\right)=0\)
\(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow 21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x+35=0\)
\(\Leftrightarrow35\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy ......
\(x^3-\frac{4}{25}x=0\)
\(\Rightarrow x\left(x^2-\frac{4}{25}\right)=0\)
\(\Rightarrow x=0\)hoặc \(x^2-\frac{4}{25}=0\)
Nếu \(x^2-\frac{4}{25}=0\)
\(\Rightarrow x^2=0+\frac{4}{25}\)
\(\Rightarrow x^2=\frac{4}{25}\)
=>\(x\in\left\{\frac{-2}{45};\frac{2}{45}\right\}\)
Vậy \(x\in\left\{\frac{-2}{45};\frac{2}{45};0\right\}\)