cần gấp ạ huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(S=\dfrac{4\cdot6}{2}=12\left(cm^2\right)\)
b: Độ dài hai đường chéo là 8;6
Cạnh là 5cm
\(\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y-1\right)^2=x^2+y^2+7\left(1\right)\\\left(x+1\right)\left(y+2\right)=xy+5\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow xy+2x+y+2=xy+5\Leftrightarrow2x+y+2=5\)
\(\Leftrightarrow y=3-2x\left(3\right)\)
\(\left(3\right)\left(1\right)\Rightarrow\left(x+2\right)^2+\left(2-2x\right)^2=x^2+\left(3-2x\right)^2+7\Rightarrow x=y=1\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)\(\left(x,y\ne0\right)\) \(đặt\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\\dfrac{1}{6}a+\dfrac{1}{5}b=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)\(\left(tm\right)\)
Bài có khúc bị khuyết em nha! Mà lại khúc quan trọng nữa
a) \(D=4\sqrt{\dfrac{1}{3}}+5\sqrt{12}-6\sqrt{27}\)
\(=\dfrac{4}{9}\sqrt{3}+5.2\sqrt{3}-6.3\sqrt{3}\)
\(=\dfrac{4}{9}\sqrt{3}+10\sqrt{3}-18\sqrt{3}\)
\(=-\dfrac{68}{9}\sqrt{3}\)
b) \(E=\dfrac{2}{\sqrt{3}-1}-\sqrt{4-2\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)
\(=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
c) \(F=\dfrac{\sqrt{15}-\sqrt{10}}{\sqrt{3}-\sqrt{2}}+\dfrac{3}{2-\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}+\dfrac{3\left(2+\sqrt{5}\right)}{-1}\)
\(=\sqrt{5}-6-3\sqrt{5}=-2\sqrt{5}-6\)
\(\frac{\frac{3}{11}-\frac{3}{13}+\frac{3}{17}-\frac{3}{19}}{\frac{4}{11}-\frac{4}{13}+\frac{4}{17}-\frac{4}{19}}\)
\(=\frac{3.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{17}-\frac{1}{19}\right)}{4.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{17}-\frac{1}{19}\right)}\)
\(=\frac{3}{4}\)