K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

C A B E D H K

Gọi DH là khoảng cách thấp nhất từ máy bay đến mặt đất, khi đó AC có độ dài lớn nhất là 2,2m. Dựng hình chữ nhật DHEK => DH = EK

Do BA = BE = BC = 1,5m cố định nên tam giác ACE vuông tại A

Xét tam giác ACE vuông tại A có cos\(\widehat{ECA}\) = \(\dfrac{CA}{CE}=\dfrac{2,2}{3}\) => \(\widehat{ECA}\) \(\approx\) 42o50'

BA = BC => tam giác ABC cân tại B => \(\widehat{BAC}=\widehat{BCA}\) = \(\widehat{ECA}\) \(\approx\) 42o50'

=> \(\widehat{DBK}\) = \(\widehat{BAC}+\widehat{BCA}\) = 2.\(\widehat{BCA}\) = 85o40'

Xét tam giác DBK vuông tại D có: BK = BD. cos\(\widehat{DBK}\) 

                                                            = 4.cos85o40' \(\approx\) 0,3022

=> DH = KE \(\approx\) 1,5 - 0,3022 \(\approx\)1,2 (m)

22 tháng 12 2021

undefined

2 tháng 6 2023

x + 3y = x(5y - 1)   (1)

1/x - 3/y = -2    (2)

(1) ⇔ x(5y - 1) - x = 3y

⇔ x(5y - 2) = 3y

⇔ x = 3y/(5y - 2)     (3)

Thế (3) vào (2) ta được:

(2) ⇔ 1/[3y/(5y - 2)] - 3/y = -2

⇔ (5y - 2)/3y - 3/y = -2

⇔ 5y - 2 - 9 = -6y

⇔ 5y + 6y = 11

⇔ 11y = 11

⇔ y = 1 thế vào (3) ta được:

x = 3.1/(5.1 - 2) = 1

Vậy S = {(1; 1)}

29 tháng 6 2021

Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!

`|P|>=P`

Mà `|P|>=0`

`=>P<=0`

`<=>(sqrtx+2)/(2sqrtx-1)<=0`

Mà `sqrtx+2>=2>0AAx>=0`

`<=>2sqrtx-1<0`

`<=>2sqrtx<1`

`<=>sqrtx<1/2`

`<=>x<1/4`

Vậy với `0<=x<1/4` thì `|P|>=P.`

27 tháng 6 2021

a, Thay tọa độ điểm ( 2;5 ) vào hàm số ta được ;

\(2\left(2m-1\right)+m-3=5\)

\(\Rightarrow m=2\)

b, - Gọi điểm cố định hàm số đi qua là M (x0; y0 ) ta được :

\(\left(2m-1\right)x_0+m-3=y_0\)

\(\Leftrightarrow2mx_0-x_0+m-3-y_0=0\)

\(\Leftrightarrow m\left(2x_0+1\right)-x_0-y_0-3=0\)

- Để hàm số luôn đi qua điểm cố định \(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0+y_0+3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy điểm cố định mà hàm số đi qua là : M ( -1/2; -5/2 )

c, - Thay điểm có hoành độ là \(\sqrt{2}-1\) vào hàm số ta được :

\(\left(\sqrt{2}-1\right)\left(2m-1\right)+m-3=0\)

\(\Leftrightarrow m=\dfrac{6+5\sqrt{2}}{7}\)

Vậy ...

27 tháng 6 2021

3, giải tìm m sai rùi bn ;-;

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

14 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C

trong \(\Delta ABC\) vuông tại C có

AC=AB.cosBAC=10.cos30=8,7

BC=AB.sinCAB=10.sin30=5

ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B

trong \(\Delta\)ABE vuông tại B có

\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)

mà:CE=AE-AC=11,5-8,7=2,8

b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có

\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)

15 tháng 10 2021

 mình cảm ơn bạn :>