K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

Đáp án:B = (1 + 3^1) + (3^2 + 3^3) + ... + (3^98 + 3^99) = 4 + 3^2(1 + 3^1) + ... + 3^98(1 + 3^1) = 4 + 3^2.4 + .... + 3^98 . 4 = 4.(1 + 3^2 + ... + 3^98)  Do đó B chia hết cho 4

26 tháng 2 2022

Ta thấy trong 2021 số nguyên tố đầu tiên, có hai thừa số 2 và 13

Mà \(2.13=26\)chia hết cho 26

-> Tích 2021 số nguyên tố đầu tiên chia hết cho 26

13 tháng 3 2019

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!

16 tháng 4 2016

ai trả lời đi

11 tháng 3 2017

+Vì p là tích của 2016 số nguyên tố đầu tiên 

Nên ta có : p = 2.3.5.7.11....

Vì 3 chia hết cho 3 

=》p-1 chia 3 dư 2 

Mà số chính phương khi chia cho 3 chỉ dư 0 hoặc 1 

Nên p-1 không phải lá số chính phương .

+ Giả sử p+1 là số chính phương 

Đặt p+1=a2 

=》p=(a-1).(a+1)...(1)

Vì p là tích của 2016 số nguyên tố đầu tiên 

Nên p chia hết cho 2 

=》P là số chẵn (2)

Từ 1 và 2 =》a là số lẻ 

Nên a-1 và a+1 là số chẵn 

=》(a-1) và (a+1) chia hết cho 2

=》(a-1). (a+1) chia hết cho 2.2=4 (3)

Từ 1 và 3 =》p chia hết cho 4 (vô lý)

=》Điều giả sử là sai 

Nên p+1 không phải là số chính phương

Vậy p-1 và p+1 không phải là số chính phương 

Mk giải rất chi tiết rùi đó cho mk nha

7 tháng 11 2021

vì p + 16 là SNT => p là số lẻ => p = 2k + 1

vì p là SNT lớn hơn 3 thì p = 3k + 1 ; 3k + 2

nếu p = 3k + 1 mà p là số lẻ => 3k là chẵn 

=> p + 2021 = 6k + 2022 chia hết cho 6

nếu p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 chia hết cho 3 

kết luận : p = 3k + 1

DD
20 tháng 10 2021

Gọi \(2021\)số đó là \(a_1,a_2,...,a_{2021}\).

Đặt \(t_1=a_1,t_2=a_1+a_2,...,t_n=a_1+a_2+...+a_n,...,t_{2021}=t_1+...+t_{2021}\).

\(t_1,...,t_{2021}\)có \(2021\)số nên có ít nhất \(2\)trong \(2021\)số trên có cùng số dư khi chia cho \(2020\).

Giả sử đó là \(t_m,t_n\)với \(m>n\).

Khi đó \(t_m-t_n\)chia hết cho \(2020\).

Ta có đpcm. 

đpcm là j ạ

23 tháng 2 2023

A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)

Gọi ước chung lớn nhất của

22021 + 32021 và 22022+32022 là d (d\(\in\)N*)

Ta có :  \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\) 

⇒           \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)

Trừ vế với vế ta được 32022 - 2.32021 ⋮ d 

                                ⇒ 32021.( 3 - 2) ⋮ d 

                                ⇒ 32021 ⋮ d 

                              ⇒ d \(\in\){ 1; 3; 32; 33;........32021)

                               nếu d \(\in\) { 3; 32; 33;.....32021) thì 

                      ⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )

               vậy d = 1

Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)

 

11 tháng 10 2021

a, Tham Khảo: tìm số nguyên tố p biết p+1 là tổng của n số nguyên dương đầu tiên, trong đó n là một số tự nhiên nào đó câu hỏi 1272037 - hoidap247.com

\(b,B=\left(1+2^2+2^4\right)+\left(2^6+2^8+2^{10}\right)+...+\left(2^{1996}+2^{1998}+2^{2000}\right)\\ B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{1996}\left(1+2^2+2^4\right)\\ B=\left(1+2^2+2^4\right)\left(1+2^6+...+2^{1996}\right)\\ B=21\left(1+2^6+...+2^{1996}\right)⋮21\)

30 tháng 10 2021

a) nếu P = 2 thì P + 1 = 2 + 1 = 3 = 1 + 2 (chọn)

nếu P = 3 thì P + 1 = 3 + 1 = 4 = 1 + 2 + 1 (loại)

xét : ta có thể phân các tổng lớn hơn 3 thành tổng của 3 số hạng khác nhau nhưng số 4 thì không thể phân thành 3 số nguyên dương khác nhau

vì số 3 cũng không thể nên nhưng khác với số 4 là nó chỉ có thể phân thành tổng của 2 hay 1 số nguyên dương khác nhau

=>n = 2 và P = 2

cái này là mk tự nghĩ ra thôi nha , có gì sai mong mng chỉ bảo