K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/A(x)=3x3+2x2-x+7-3x

Ax)=3x3+2x2-4x+7  bậc là 3

B(x)=2x-3x3+3x2-5x-1

B(x)=-3x3+3x2-3x-1 bậc là 3

b)A(x)+b(x)=5x2-7x+6

29 tháng 5 2016

aTa thu gọn hai đa thức sau : 

A(x)=3x3+2x2-x+7-3x

=3x3+2x2-x-3x+7

=3x3+2x2-4x+7

B(x)=2x-3x3+3x2-5x-1

=2x-5x-3x3+3x2-1

=-3x-1

a,A(x)+B(x)=(3x3+2x2-4x+7)+(-3x-1)

=3x3+2x2-4x+7+(-3)x-1

=3x3+2x2-4x+(-3)x+7-1

=3x3+2x2-7x+6

b,A(x)-B(x)=(3x3+2x2-4x+7)-(-3x-1)

=3x3+2x2-4x+7+3x+1

=3x3+2x2-4x+3x+7+1

=3x3+2x2-x+8

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

25 tháng 7 2018

a. Ta có:

f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5

Bậc của đa thức f(x) là 3 (0.5 điểm)

g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4

Bậc của đa thức g(x) là 3 (0.5 điểm)

a: P(x)=x^3-x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3

N(x)=P(x)-Q(x)

=x^3-x^2+x+2+x^3-x^2+x-1

=2x^3-2x^2+2x+1

c: M(x)=3

=>M(x) ko có nghiệm

`a,`

`P(x)=2x^3-2x+x^2-x^3+3x+2`

`= (2x^3-x^3)+x^2+(-2x+3x)+2`

`= x^3+x^2+x+2`

`b,`

`H(x)+Q(x)=P(x)`

`-> H(x)=P(x)-Q(x)`

`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`

`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`

`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`

`= 2x^2+2x+1`

Vậy, `H(x)=2x^2+2x+1.`

NV
7 tháng 5 2023

a.

\(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=x^3-x^2-x+1\)

b.

\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)

\(\Rightarrow H\left(x\right)=2x^2+2x+1\)

29 tháng 5 2016

bạn ơi ghi số mũ giùm mk 

29 tháng 5 2016

a)

\(A\left(x\right)=3x^3+2x^2-4x+7\)

\(B\left(x\right)=-3x^3+3x^2-3x-1\)

A(x) là đa thức bậc 3

B(x) là đa thức bậc 3

b)

\(A\left(x\right)+B\left(x\right)=\left(3x^3+2x^2-4x+7\right)+\left(-3x^3+3x^2-3x-1\right)=5x^2-7x+6\)

c)

\(A\left(x\right)-B\left(x\right)=\left(3x^3+2x^2-4x+7\right)-\left(-3x^3+3x^2-3x-1\right)=6x^3-x^2-x+8\)                            

8 tháng 4 2022

a)\(P\left(x\right)=5x^3+3x^2+6x+2\)

b)\(Q\left(x\right)=x^3+2x^2+5x-1\)

8 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=5x^3+3x^2+6x+2+x^3+2x^2+5x-1\)

\(P\left(x\right)+Q\left(x\right)=6x^3+5x^2+11x+1\)