x/4=36/y2=z3/16=-12/-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)
=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)
b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Chọn B
Ta có: x - y 2 = x 2 -2xy+ y 2 = ( x 2 + y 2 ) - 2xy = 26 - 2.5=16
\(\left(5x^5y^2z+\dfrac{1}{2}x^4y^2z^3-2xy^3z^2\right):\dfrac{1}{4}xy^2z\\ =\left(5:\dfrac{1}{4}\right).\left(x^5:x\right).\left(y^2:y^2\right).\left(z:z\right)+\left(\dfrac{1}{2}:\dfrac{1}{4}\right).\left(x^4:x\right).\left(y^2:y^2\right).\left(z^3:z\right)-\left(2:\dfrac{1}{4}\right).\left(x:x\right).\left(y^3:y^2\right).\left(z^2:z\right)\\ =20x^4+2x^3z^2-8yz\)
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
a) \(58+7x=100\)
\(=>7x=100-58\)
\(=>7x=42\)
\(=>x=42:7\)
\(=>x=6\)
b) \(3x-7=28\)
\(=>3x=28+7\)
\(=>3x=35\)
\(=>x=35:3\)
\(=>x=\dfrac{35}{3}\)
c) \(x-56:4=16\)
\(=>x-14=16\)
\(=>x=16+14\)
\(=>x=30\)
d) \(101+\left(36-4x\right)=105\)
\(=>36-4x=105-101\)
\(=>36-4x=4\)
\(=>4x=36-4\)
\(=>4x=32\)
\(=>x=32:4\)
\(=>x=8\)
e) \(\left(x-12\right):12=12\)
\(=>x-12=12.12\)
\(=>x-12=144\)
\(=>x=144-12\)
\(=>x=132\)
f) \(\left(3x-2^4\right).7^3=2.7^4\)
\(=>3x-2^4=2.7^4:7^3\)
\(=>3x-16=2.7=14\)
\(=>3x=14+16\)
\(=>3x=30\)
\(=>x=30:3\)
\(=>x=10\)
i) \(\left(10+2x\right).4^{2011}=4^{2013}\)
\(=>10+2x=4^{2013}:4^{2011}\)
\(=>10+2x=4^2=16\)
\(=>2x=16-10\)
\(=>2x=6\)
\(=>x=6:2\)
\(=>x=3\)
\(#WendyDang\)
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{36}{y^2}=\dfrac{z^3}{16}=4\)
=>x=16; \(y\in\left\{3;-3\right\}\); z=4