tìm x,biết:
x^2-x+1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-4}{2008}\)
<=> \(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-3}{2009}-1\right)=\left(\dfrac{x-4}{2008}-1\right)\)
<=> \(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2009}-\dfrac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
<=> x - 2012 = 0
<=> x = 2012
số số hạng: ( 2500 - 2 ) : 2 +1 = 1250 số
tổng: ( 2500 +2 ) . 1250 : 2 = 1563750
Vì: 1250 . 1251 = 1563750
=> x = 1250
Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2013\right)=4+1007\cdot2013\)
\(\Leftrightarrow2014x+2027091=2027095\)
\(\Leftrightarrow2014x=4\)
hay \(x=\dfrac{2}{1007}\)
Ta có: \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2003\right)=4+1007\cdot2003\)
\(\Leftrightarrow2004x+\dfrac{2003\cdot2004}{2}=4+1007\cdot2003\)
\(\Leftrightarrow2004x=10019\)
hay \(x=\dfrac{10019}{2004}\)
\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Leftrightarrow x^3-25x-x^3-8=42\)
\(\Leftrightarrow-25x-8=42\)
\(\Leftrightarrow-25x=42+8\)
\(\Leftrightarrow-25x=50\)
\(\Leftrightarrow x=-\dfrac{50}{25}=-2\)
X =1/2
Giải theo cách của lớp 7 ( áp dụng tích chất phân phối của phép nhân đối với phép cộng)
\(x^2-x+\frac{1}{4}=0=>x^2-\frac{x}{2}-\frac{x}{2}+\frac{1}{4}=0\)
=> \(x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)=0\)
=> \(\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)=0\Rightarrow\left(x-\frac{1}{2}\right)^2=0\)
=> \(x=\frac{1}{2}\)