K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

\(x^4+2x^2+1+3x^3+3x+2x^2=0\)

\(x^4+3x^3+4x^2+3x+1=0\)

\(x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)

\(x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)

\(\left(x+1\right)\left[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(x=-1\)

26 tháng 5 2016

\(x^4+2x^2+1+3x^3+3x+2x^2=0\) 0 

\(x^4+3x^3+4x^2+3x+1=0\)

\(x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)

\(x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)

\(\left(x+1\right)\left[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(x=-1\)

15 tháng 1 2022

Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ

c: =>x+2>0

hay x>-2

d: =>-4<=x<=3

e: =>\(x\in\varnothing\)

f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)

Bài 1: 

b) \(\left(2x^2-3y\right)^3\)

\(=8x^6-3\cdot4x^4\cdot3y+3\cdot2x^2\cdot9y^2-27y^3\)

\(=8x^6-36x^4y+54x^2y^2-27y^3\)

Bạn nên đánh lại đề bài a nhé.

undefined

7 tháng 8 2021

bạn ơi có câu c không bạn

 

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

2 tháng 4 2023

\(x\left(3x-4\right)=2x^2+1\)

\(\Leftrightarrow3x^2-4x-2x^2-1=0\)

\(\Leftrightarrow x^2-4x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

Ta có :

\(A=x_1^2+x_2^2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4^2-1\)

\(=16-1\)

\(=15\)

e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)

\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)

\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)

\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)

23 tháng 7 2023

A) \(...=\left(7y-3\right)^3\)

B) \(...=\left(4y-3\right)^3\)

C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)

\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)

D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)

\(=\left(x-3\right)^2-\left(y-5\right)^2\)

23 tháng 7 2023

cậu có thể giải chi tiết giúp tớ dc ko

 

2 tháng 4 2023

\(2x^2-6x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{2}=3\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)

Ta có :

\(A=\dfrac{x_1-2}{x_2-1}+\dfrac{x_2-2}{x_1-1}\)

\(=\dfrac{\left(x_1-2\right)\left(x_1-1\right)+\left(x_2-2\right)\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1-2x_1+2+x_2^2-x_2-2x_2+2}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3^2-2.\left(-\dfrac{1}{2}\right)-3.3+4}{-\dfrac{1}{2}-3+1}\)

\(=-2\)