1,Cho A=1/21+1/22+1/23+...+1/40
CMR: 1/2<A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B\text{=}2.63+...+2^{56}.63\)
\(\Rightarrow B⋮63\)
\(\Rightarrow B⋮21\)
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)
Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40
1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)
A>1/40x20=1/2
A>1/20 (1)
Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40
1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40
1/21x20>A
20/21>A.Mà 1>20/21
1>A (2)
Từ (1) và (2) ta có : 1/2<A<1(đpcm)
Vậy bài tôán đđcm
\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng \(\)
\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng
\(\frac{1}{21}>\frac{1}{40}\)
\(\frac{1}{22}>\frac{1}{40}\)
\(.....\)
\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)
\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng
\(\Rightarrow\frac{1}{2}< A< 1\)
Sửa: \(A=1+2^1+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\\ \Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\\ ....\\ \Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
\(A=1+2^1+2^1+2^2+...+2^{2021}\\ \Rightarrow A=1+2+2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2+2^2+...+2^{2021}\\ \Rightarrow A=1+2^2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2^2+...+2^{2021}\\ \Rightarrow A=1+2^3+...+2^{2021}\)
....
\(\Rightarrow A=1+2^{2022}\)
\(2^x=1+A\\ \Rightarrow2^x=1+1+2^{2022}\\ \Rightarrow2^x=2+2^{2022}\)
không phù hợp với lớp 6
Ta có: \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(có 20 số hạng \(\frac{1}{40}\))\(=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\left(1\right)\)
Ta lại có:\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}<\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(có 20 số hạng \(\frac{1}{20}\))
\(=\frac{20}{20}=1\)
\(\Rightarrow A<1\)
Từ (1) và (2) =>ĐPCM
Chọn mình nhé
Ta có:
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=1\) (20 p/số 1/20)
Hay A < 1.
Ta lại có:
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{2}\) (20 p/số 1/40)
Hay A > 1
Vậy \(\frac{1}{2}< A< 1\)
A=1/21+1/22+1/23+...+1/40(có 20 phân số)
A>1/40+1/40+1/40+...+1/40(có 20 phân số)
A>20/40=1/2(1)
A=1/21+1/22+1/23+...+1/40(có 20 phân số)
A<1/20+1/20+1/20+...+1/20(có 20 phân số)
A<20/20=1(2)
Từ (1) và (2)=>1/2<A<1
a, Số lượng số hạng của A là: (40-21):1+1=20 số (1)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(=>A>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(20 số hạng)
\(A>\frac{1}{40}\cdot20=\frac{20}{40}=\frac{1}{2}\)
Vậy A> \(\frac{1}{2}\)
b, Từ (1) => \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
=> \(A< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 20 số hạng)
=> A< \(\frac{1}{20}\cdot20=1\)
Vậy A< 1