(m-2)x^2-2mx+m+3=0 có 2 nghiệm thỏa mãn 1<x1<x2
(m-2)x^2-2mx+m+3=0 có 2 nghiệm thỏa mãn x1<x2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
1.
\(2\left|x-m\right|+x^2+2>2mx\)
\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)
\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)
\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)
Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)
\(\Leftrightarrow-\sqrt{2}< m< 2\)
Vậy \(-\sqrt{2}< m< 2\)
2.
\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)
Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)
\(\Leftrightarrow2m^2-3m+1< 0\)
\(\Leftrightarrow\dfrac{1}{2}< m< 1\)
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(\Delta'=m^2+9>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-9\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên: \(x_1^2-2mx_1-9=0\)
\(\Rightarrow x_1^2=2mx_1+9\)
\(\Rightarrow x_1^3=2mx_1^2+9x_1\)
Thế vào bài toán:
\(x_1^3+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9x_1+9x_2=0\)
\(\Leftrightarrow2mx_1^2+9\left(x_1+x_2\right)=0\)
\(\Leftrightarrow2mx_1^2+18m=0\)
\(\Leftrightarrow2m\left(x_1^2+9\right)=0\)
\(\Leftrightarrow m=0\) (do \(x_1^2+9>0;\forall x_1\))
\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\forall m\)
=>Phương trình (1) luôn có hai nghiệm phân biệt
Áp dụng Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
\(9-x_1^2-x_2^2>=0\)
=>\(9-\left(x_1^2+x_2^2\right)>=0\)
=>\(9-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]>=0\)
=>\(9-\left[\left(2m\right)^2-2\left(2m-3\right)\right]>=0\)
=>\(9-4m^2+4m-6>=0\)
=>\(-4m^2+4m+3>=0\)
=>\(4m^2-4m-3< =0\)
=>\(4m^2-6m+2m-3< =0\)
=>(2m-3)(2m+1)<=0
=>\(-\dfrac{1}{2}< =m< =\dfrac{3}{2}\)
mà m là số nguyên nhỏ nhất
nên m=0
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>(-m)^2-(-m) >= 0`
`<=>m(m+1) >= 0`
`<=>` $\left[\begin{matrix} m \le -1\\ m \ge 0\end{matrix}\right.$
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=-m):}`
Ta có:`x_1 ^2+2mx_2+19(m+1)=0`
`<=>x_1 ^2+(x_1+x_2)x_2+19(m+1)=0`
`<=>x_1 ^2+x_1.x_2+x_2 ^2+19(m+1)=0`
`<=>(x_1+x_2)^2-x_1.x_2+19(m+1)=0`
`<=>(2m)^2-(-m)+19m+19=0`
`<=>4m^2+10m+19=0`
Ptr có:`\Delta'=5^2-4.19=-51 < 0`
`=>` Ptr vô nghiệm
Vậy ko có gtr `m` t/m yêu cầu đề bài
Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)
Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)
Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)
\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)
\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)