Tính \(A=\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\) khi \(x=\frac{\sqrt{3}}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)
\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)
\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)
\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-\sqrt{2x}\)
\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)
\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)
Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:
\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)
\(M=-1-\sqrt{2}\)
Vậy ..............
Lời giải:
Tại $x=\frac{\sqrt{3}}{4}$:
\(\sqrt{1+2x}=\sqrt{1+\frac{\sqrt{3}}{2}}=\sqrt{\frac{2+\sqrt{3}}{2}}=\sqrt{\frac{4+2\sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}+1)^2}{2^2}}=\frac{\sqrt{3}+1}{2}\)
\(\sqrt{1-2x}=\sqrt{1-\frac{\sqrt{3}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2}}=\sqrt{\frac{4-2\sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}-1)^2}{2^2}}=\frac{\sqrt{3}-1}{2}\)
\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}+1}{2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}-1}{2}}\\ =\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\\ =\frac{4+2\sqrt{3}}{2\sqrt{3}(\sqrt{3}+1)}+\frac{4-2\sqrt{3}}{2\sqrt{3}(\sqrt{3}-1)}\\ =\frac{(\sqrt{3}+1)^2}{2\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{2\sqrt{3}(\sqrt{3}-1)}\\ =\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{2\sqrt{3}}{2\sqrt{3}}=1\)
\(P=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(=\frac{1}{\sqrt{2}}\left[\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\right]\)
\(=\frac{1}{\sqrt{2}}\left[\frac{2+\sqrt{3}}{\sqrt{2}+\frac{\sqrt{3}+1}{\sqrt{2}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\frac{\sqrt{3}-1}{\sqrt{2}}}\right]\)
Vì \(\sqrt{2\pm\sqrt{3}}=\sqrt{\frac{\left(1\pm\sqrt{3}\right)^2}{2}}=\frac{\sqrt{3}\pm1}{\sqrt{2}}\)
\(P=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}=\frac{3+\sqrt{3}}{6}+\frac{3-\sqrt{3}}{6}=1\)