K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)

\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)

\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=-\sqrt{2x}\)

\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)

\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)

\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)

Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:

\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)

\(M=-1-\sqrt{2}\)

Vậy ..............

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

Tại $x=\frac{\sqrt{3}}{4}$:

\(\sqrt{1+2x}=\sqrt{1+\frac{\sqrt{3}}{2}}=\sqrt{\frac{2+\sqrt{3}}{2}}=\sqrt{\frac{4+2\sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}+1)^2}{2^2}}=\frac{\sqrt{3}+1}{2}\)

\(\sqrt{1-2x}=\sqrt{1-\frac{\sqrt{3}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2}}=\sqrt{\frac{4-2\sqrt{3}}{4}}=\sqrt{\frac{(\sqrt{3}-1)^2}{2^2}}=\frac{\sqrt{3}-1}{2}\)

\(A=\frac{1+\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}+1}{2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}-1}{2}}\\ =\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\\ =\frac{4+2\sqrt{3}}{2\sqrt{3}(\sqrt{3}+1)}+\frac{4-2\sqrt{3}}{2\sqrt{3}(\sqrt{3}-1)}\\ =\frac{(\sqrt{3}+1)^2}{2\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{2\sqrt{3}(\sqrt{3}-1)}\\ =\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{2\sqrt{3}}{2\sqrt{3}}=1\)

 

24 tháng 12 2018

\(P=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)

\(=\frac{1}{\sqrt{2}}\left[\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\right]\)

\(=\frac{1}{\sqrt{2}}\left[\frac{2+\sqrt{3}}{\sqrt{2}+\frac{\sqrt{3}+1}{\sqrt{2}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\frac{\sqrt{3}-1}{\sqrt{2}}}\right]\)

Vì \(\sqrt{2\pm\sqrt{3}}=\sqrt{\frac{\left(1\pm\sqrt{3}\right)^2}{2}}=\frac{\sqrt{3}\pm1}{\sqrt{2}}\)

\(P=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}=\frac{3+\sqrt{3}}{6}+\frac{3-\sqrt{3}}{6}=1\)