K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

A B C D I E O

Cô hướng dẫn nhé. :)

Tứ giác AIDE nội tiếp đường tròn đường kính AI.

b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.

c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )

Chúc em học tốt ^^

a: góc IED+góc ICD=180 độ

=>IEDC nội tiếp

b: góc ECI=góc BDA=1/2*sđ cung BA

=>góc ECI=góc BCI

=>CI là phân giác của góc BCE

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

28 tháng 11 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

19 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tam giác vuông EFD có:

FM là đường trung tuyến ứng với cạnh huyền CD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 là góc ngoài tại đỉnh M của tam giác FMD nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác BCMF có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cùng nhìn cạnh BF dưới một góc bằng nhau

Suy ra, tứ giác BCMF nội tiếp được.

22 tháng 8 2021

a) Xét tứ giác AHIK có:

\(\widehat{AKI}+\widehat{AHI}=90^0+90^0=180^0\)

Nên tứ giác AHIK nội tiếp được trong một đường tròn(đpcm)

b) Vì CI vuông góc với AB(I là trực tâm tam giác ABC) và BD vuông góc với AB(góc nội tiếp chắn nửa đường tròn) nên CI // BD.

VÌ BI vuông góc với AC(I là trực tâm tam giác ABC) và CD vuông góc với AC(góc nội tiếp chắn nửa đường tròn) nên BI // CD.

Xét tứ giác BICD có:

CI // BD; BI // CD

Nên tứ giác BICD là hình bình hành.

Suy ra, BC và DI cắt nhau tại M là trung điểm của mỗi đoạn.

Xét tam giác AID có:

O là trung điểm của AD và M là trung điểm của DI nên OM là đường trung bình của tam giác AID.

Suy ra, AI // OM. Mà AI vuông góc với BC(do I là trực tâm tam giác ABC) nên OM vuông góc với BC(đpcm).

24 tháng 3 2018

cậu ơi cho tớ hỏi tý

14 tháng 3 2020

 Ta có:  ˆACD=900ACD^=900 (góc nội tiếp chắn nửa đường tròn đường kính AD) 

Xét tứ giác DCEF có:

        ˆACD=900ACD^=900 (cm trên)

        ˆEFD=900EFD^=900 (vì EF⊥ADEF⊥AD (gt))

⇒ˆACD+ˆEFD=1800⇒ACD^+EFD^=1800

=> Tứ giác DCEF là tứ giác nội tiếp đường tròn (đpcm).

b) Vì tứ giác DCEF là tứ giác nội tiếp (chứng minh câu a) 

⇒ˆC1=ˆD1⇒C1^=D1^ (góc nội tiếp cùng chắn cung EF) (1)

Mà ⇒ˆC2=ˆD1⇒C2^=D1^ (góc nội tiếp cùng chắn cung AB) (2)

Từ (1) và (2) ⇒ˆC1=ˆC2⇒C1^=C2^

⇒⇒ CA là tia phân giác của ˆBCFBCF^ (đpcm)

k đúng hộ