Từ một điểm A nằm ngoài đường tròn tâm o vẽ hai tiếp tuyến AB,AC và cát tuyến AMN của đường tròn đó. Biết góc A= 60° ,OB=2cm a, tính số đo của góc BOC b, tính diện tích hình quạt OBNC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA vuông tại B có
\(\cos\widehat{BOA}=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOCA vuông tại C có
\(\cos\widehat{COA}=\dfrac{OC}{OA}=\dfrac{1}{2}\)
nên \(\widehat{COA}=60^0\)
b: Số đo cung nhỏ BC là 120 độ
Số đo cung lớn BC là 240 độ
a) Ta có I là trung điểm MN
=> OI vuông MN
Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì AB là tiếp tuyến(O; R))
và \(\widehat{AIO}=90^o\)
=> \(\widehat{AIO}+\widehat{ABO}=180^o\)
=> Tứ giác ABOI nội tiếp (1)
Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))
Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)
=> Tứ giác ABOC nội tiếp (2)
Như vậy A,B, C, O, I cùng nằm trên môt đường tròn
b) AB=OB mà AB=AC; OB=OC
=> AB=AC=OB=OC
=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)
=> ABOC là hình vuông
c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:
\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)
Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận AO là cạnh huyền
=> JA=JB=JC=JO
=> J là tâm đường tròn ngoại tiếp ABOC
như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)
Có bán kính rồi em tính diện tích và chu vi đi nhé!
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
hay A,B,O,C cùng thuộc một đường tròn(1)
Xét tứ giác OIAC có
\(\widehat{OIA}+\widehat{OCA}=180^0\)
Do đó: OIAC là tứ giác nội tiếp
hay O,I,A,C cùng thuộc một đường tròn(2)
Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(4)
Từ (3) và (4) suy ra OA⊥BC(5)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
hay BC⊥CD(6)
Từ (5) và (6) suy ra CD//OA
a: sđ cung nhỏ BC=góc BOC=120 độ
b: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
e: ΔOMN cân tại O có OI là trung tuyến
nên OI vuông góc MN
góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
=>góc IOC=góc IAC