Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA vuông tại B có
\(\cos\widehat{BOA}=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOCA vuông tại C có
\(\cos\widehat{COA}=\dfrac{OC}{OA}=\dfrac{1}{2}\)
nên \(\widehat{COA}=60^0\)
b: Số đo cung nhỏ BC là 120 độ
Số đo cung lớn BC là 240 độ
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,H,O thẳng hàng
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔBOA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot2R=R^2\)
=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)
\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)
mà \(\widehat{OBM}=\widehat{OMB}\)
nên \(\widehat{ABM}=\widehat{HBM}\)
=>BM là phân giác của góc ABH
Xét ΔABC có
BM,AM là các đường phân giác
BM cắt AM tại M
Do đó: M là tâm đường tròn nội tiếp ΔABC