K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có

1/12+1/1.2+1/2.3+...+1/2014.2015>A>1/12+1/2.3+1/3.4+..+1/2015.2016

1+1-1/2+1/2-1/3+..+1/2014-1/2015>A>1+1/2-1/3+1/3-1/4+...+1/2015-1/2016

2-1/2015>A>1-1/2016

4029/2015>A>2015/2016

<=>A ko phải là số tự nhiên (đpcm)

13 tháng 5 2016

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2015^2}>1\)

=>A > 1 (1)

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{2015^2}<\frac{1}{2014.2015}\)

=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2014.2015}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2014}-\frac{1}{2015}\)

=>\(A<2-\frac{1}{2015}<2\)  (2)

Từ (1);(2)=>1 < A < 2

=>A không là số tự nhiên (đpcm)

1 tháng 5 2019

A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017

2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016

2A + A = 1 + 1/2^2017

=> A = (1 + 1/2^2017) : 3 

Ta có: A > 0 (Vì A gồm các phân số dương)

Ta lại có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\)

Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)

9 tháng 5 2016

ta thấy 1/2^2;...;1/2016^2 >0=> A>0

lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016

=> A<1

=> 0<A<1 => Ako là stn

 

9 tháng 5 2016

Ta thấy A = 1/2^2 + 1/3^2 + 1/4^2+...+ 1/2016^2

=> A < 1/(1.2) + 1/(2.3) + 1/(3.4) +....+ 1/(2015.2016)

=> A < 1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016

=> A < 1 - 1/2016 < 1

Mặt khác :1/2^2 > 0

1/3^2 > 0 

1/4^2 > 0

..........

1/2016^2 > 0

=> A > 0

=> 0<A<1

=> A ko phải số tự nhiên

Vậy a ko phải số tự nhiên

19 tháng 4 2020

Ta có A>1

\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

=> 1<A<2 => A không là số tự nhiên

8 tháng 4 2019

bạn ơi bài này có trong bùi văn tuyên

8 tháng 4 2019

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)