a, tìm số tự nhiên 1a5b6c biết số này phải chia hết cho 2,5,9,3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy là chữ số tận cùng của A là 5 (vì không thể là 0 do 3 số đầu không có tổng bằng 31 được)
Tổng 3 chữ số đầu là: 31 - 5= 26
26 = 9 + 9 + 8
Vậy số ban đầu có thể là: 998,5 hoặc 989,5 hoặc 899,5
Bài b)
Các số tự nhiên có 2 chữ số chia hết cho 9 là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
Số tự nhiên chia 5 dư 2 có tận cùng là 2 hoặc 7
Vậy ta thấy có 27 và 72 là thoả mãn
Vậy số tự nhiên ab cần tìm là 27 hoặc 72
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
chả cần tìm số nào có dạng a2009 chia hết 152 là được
Số đó là số lẻ + không sử dụng các chữ số 1; 3 + không chia hết cho 5 => Số đó có tận cùng là 7; 9
Vậy ta có các số 7; 9; 47; 49; 57
Mà số đó không chia hết cho 3; 7 => Ta còn lại số 47
(((
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
a) Do x chia hết cho 40 và chia hết cho 50 nên:
\(x\in BC\left(40,50\right)\)
Ta có:
\(B\left(40\right)=\left\{0;40;80;120;160;200;240;280;320;360;400;440;480;520;..\right\}\)
\(B\left(50\right)=\left\{0;50;100;150;200;250;300;350;400;450;500;550...\right\}\)
\(\Rightarrow BC\left(40,50\right)=\left\{0;200;400;600;...\right\}\)
Mà: \(x< 500\)
\(\Rightarrow x\in\left\{0;200;400\right\}\)
b) A chia hết cho 140 và A chia hết cho 350 nên:
\(\Rightarrow A\in BC\left(140,350\right)\)
Ta có:
\(B\left(140\right)=\left\{0;140;280;420;560;700;840;980;1120;1260;1400;1540\right\}\)
\(B\left(350\right)=\left\{0;350;700;1050;1400;1750;...\right\}\)
\(\Rightarrow BC\left(140;350\right)=\left\{0;700;1400;...\right\}\)
Mà: \(1200< A< 1500\)
\(\Rightarrow A\in\left\{1400\right\}\)
vì số này chia hết cho 2 và 5 nên C phải bằng 0
vì số này chia hết cho 9 và 3 nên \(1+a+5+b+6+c=12+a+b\) chia hết cho 9
nên \(a+b=6\text{ hoặc }a+b=15\)
vì vậy ta có rất nhều số thỏa mãn : ví dụ như 115560, 125460,....