GIÚP EM VỚI ẠAA
Cho các số thực a,b,c thỏa mã a+b+c=7 và ab+ac+bc=15.chứng minh rằng a<=1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)
\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)
\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)
\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a + b + c = 7 => b + c = 7 - a
=> 15 = ab + bc + ac = a( b + c ) + bc \(\le a\left(7-a\right)+\frac{\left(b+c\right)^2}{4}\)
<=> \(60\le28a-4a^2+\left(7-a\right)^2\)
<=> \(3a^2-14a+11\le0\)
<=> \(1\le a\le\frac{11}{3}\)
Vậy \(a\le\frac{11}{3}\)
Dấu "=" xảy ra <=> b = c = 5/3
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-ab-ac+a-bc+b+c-1\)
\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)
\(=0+0=0\) (ddpcm)
\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)
C/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\) (*)
Thật vậy , (*) \(\Leftrightarrow\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(a+2\right)\left(c+2\right)=\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow ab+bc+ac+4\left(a+b+c\right)+12=abc+2\left(ab+bc+ac\right)+4\left(a+b+c\right)+8\)
\(\Leftrightarrow ab+bc+ac+abc=4\) (Đ)
=> (*) đúng ( đpcm )
Giải:
Biến đổi vế trái, ta được:
(a−1)(b−1)(c−1)(a−1)(b−1)(c−1)
=(ab−a−b+1)(c−1)=(ab−a−b+1)(c−1)
=abc−ab−ac+a−bc+b+c−1=abc−ab−ac+a−bc+b+c−1
=abc−ab−ac−bc+a+b+c−1=abc−ab−ac−bc+a+b+c−1
=abc−(ab+ac+bc)+(a+b+c)−1=abc−(ab+ac+bc)+(a+b+c)−1
Thay ab + ac + bc = abc và a + b + c = 1, ta được:
=abc−abc+1−1=abc−abc+1−1
=0
Ta có:
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)
\(\ge2a+2b+2c+2ab+2bc+2ca=12\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)
\(P\ge a^2+b^2+c^2\ge3\)
\(P_{min}=3\) khi \(a=b=c=1\)
Ta có : \(\hept{\begin{cases}a+b+c=7\\ab+bc+ca=15\end{cases}\Leftrightarrow\hept{\begin{cases}b+c=7-a\\a.\left(b+c\right)+bc=15\end{cases}\Leftrightarrow}\hept{\begin{cases}b+c=7-a\\4.a.\left(b+c\right)+4.b.c=60\end{cases}\left(1\right)}}\)
Với hai số thực b,c ta luôn có : \(\left(b+c\right)^2-4.b.c=\left(b-c\right)^2\ge0\Rightarrow\left(b+c\right)^2\ge4.b.c\Leftrightarrow4.b.c\le\left(b+c\right)^2\left(2\right)\)
Từ ( 1 ) và ( 2) ,ta được : \(60=4.a.\left(b+c\right)+4.b.c\le4.a.\left(7-a\right)+\left(b+c\right)^2=4.a.\left(7-a\right)+\left(7-a\right)^2\)
\(\Leftrightarrow3.a^2-14.a+11\le0\left(a-1\right).\left(3.a-11\right)\le0\)
\(\Leftrightarrow1\le a\le\frac{11}{3}\)(đpcm)
Dạ đề là 1/3 không phải 11/3 ạ