\(A=\frac{10^{11}-1}{10^{12}-1}B=\frac{10^{10}+1}{10^{11}+1}\)
so sánh giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ: A=\(\frac{10^{11}-1}{10^{12}-1}\) > \(\frac{10^{11}-1-9}{10^{12}-1-9}\)= \(\frac{10^{11}-10}{10^{12}-10}\) =\(\frac{10\left(10^{10}-1\right)}{10\left(10^{11}-1\right)}\)
\(\Rightarrow\)A>\(\frac{10^{10}-1}{10^{11}-1}\)=B
VẬY A>B
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Ta có \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1};1=1\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow\frac{10^{11}-1}{10^{12}-1}< \frac{10^{10}+1}{10^{11}+1}\)
Suy ra\(A< B\)
\(A=\frac{10^{11}-1}{10^{12}-1}\) => \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\)=> 10A < 1
\(B=\frac{10^{10}+1}{10^{11}+1}\) => \(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)
=> \(10B=1+\frac{9}{10^{11}+1}\)=> 10B > 1
=> 10B > 10A => B > A
ĐS: B > A
để so sánh A và B ta so sánh
\(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)
Ta có \(10^{11}-1< 10^{11}+1\)
và \(10^{12}-1>10^{11}+1\)
=> A<B
Anh cũng nằm trong đội tuyển nàk em tham khảo nhé
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow\)\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}< 1\)\(\left(1\right)\)
Lại có :
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow\)\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(10A< 1< 10B\) hay \(A< B\)
Vậy \(A< B\)
10A=\(\frac{10^{12}-10}{10^{12}-1}\)=\(1-\frac{9}{10^{12}-1}\)
10B=\(\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Sao sánh 10A với 10B
Vì 1=1 nên so sánh \(-\frac{9}{10^{12}-1}\)với \(\frac{9}{10^{11}+1}\)
=> \(-\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1}\)
=> 10A < 10B
=> A < B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> a+nb+n >ab
Với b>a thì chứng minh tương tự ta được a+nb+n <ab
Với a=b thì chứng minh tương tự ta được a+nb+n =ab
\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\) theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)
\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)
\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)
Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)
\(\Leftrightarrow A< B\)
Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)
..... (EZ)