K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Bổ đề: Cho đường tròn (O) với 2 dây AX,AY. Gọi Z,T lần lượt là hình chiếu của O trên AX,AY. Biết \(\frac{OZ}{AX}=\frac{OT}{AY}\). Khi đó AX = AY.

A X Y O Z T A B C H O M C'

Chứng minh bổ đề (Quan sát hình bên trái): Thấy ngay Z và T lần lượt là trung điểm của AX,AY

Kết hợp \(\frac{OZ}{AX}=\frac{OT}{AY}\)suy ra \(\frac{OZ}{AZ}=\frac{OT}{AT}\). Mà ^OZA = ^OTA (=900) nên \(\Delta\)OAZ ~ \(\Delta\)OAT (c.g.c)

=> ^OAZ = ^OAT => 2 tam giác cân tại O: \(\Delta\)AOX và \(\Delta\)AOY bằng nhau => AX = AY.

Giải bài toán: Vẽ (O) ngoại tiếp \(\Delta\)ABC. Gọi M,N,P thứ tự là hình chiếu của O lên BC,CA,AB

Kẻ đường kính CC'. Khi đó AC' // BH (Cùng vuông góc AC), BC' // AH

Do vậy tứ giác AC'BH là hình bình hành => AH = BC' = 2OM (Vì OM là đường trung bình \(\Delta\)CBC')

Tương tự BH = 2ON, CH = 2OP. Từ đó kết hợp với giả thiết \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\)

Suy ra \(\frac{OM}{BC}=\frac{ON}{CA}=\frac{OP}{AB}\). Áp dụng Bổ đề ta thu được AB=BC=CA

Vậy nên tam giác ABC là tam giác đều (đpcm).

18 tháng 8 2020

vừa nghĩ được một cách dễ hơn dùng tam giác đồng dạng, ta chứng minh được \(BC.AH=CA.BH=AB.CH\)

\(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\)\(\Leftrightarrow\)\(\frac{BC.AH}{BC^2}=\frac{CA.BH}{CA^2}=\frac{AB.CH}{AB^2}\)

\(\Leftrightarrow\)\(\frac{1}{BC^2}=\frac{1}{CA^2}=\frac{1}{AB^2}\)

\(\Leftrightarrow\)\(AB=BC=CA\)

20 tháng 8 2017

v bạn khỏi cmt vô thôi chời :)

8 tháng 8 2018

Tham khảo nha .

Vẽ  HD // AC . và HE // AB 

Ta có : \(HD//AC\)

và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )

\(\Rightarrow HD\perp BH\)

\(\Rightarrow DB>BH\)

( Cạnh đối diện với góc vuông)

Chứng minh tương tự như trên ta có :

\(EC//DH\)

\(\Rightarrow CH\perp AB\)

\(\Rightarrow CH\perp CE\)

\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)

Mặt khác ta có :

\(HD//AE\)

\(HE//DA\)

\(\Rightarrow\)Tứ giác AEHD là hình bình hành 

\(\Rightarrow AD=HE\)

Xét tam giác AEH có :

\(HE+AE>AH\)

\(\Rightarrow AD+AE>AH\)

\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)

\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)

Chứng minh tương tự ta có :

\(AB+BC>AH+BH+CH\)

\(AC+BC>AH+BH+CH\)

Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)

\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)

8 tháng 8 2018

A B C D E H

11 tháng 10 2023

3:

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

\(\widehat{FCA}\) chung

Do đó: ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>\(CE\cdot CA=CH\cdot CF\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{FCB}\) chung

Do đó: ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF

=>CD*CB=CH*CF=CE*CA

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{EBC}\) chung

Do đó: ΔBDH đồng dạng với ΔBEC

=>BD/BE=BH/BC

=>\(BD\cdot BC=BH\cdot BE\)

Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

góc DBA chung

Do đó: ΔBDA đồng dạng với ΔBFC

=>BD/BF=BA/BC

=>BD*BC=BF*BA

=>BD*BC=BF*BA=BH*BE

\(AH\cdot AD+BH\cdot BE=AF\cdot AB+BF\cdot BA=BA^2\)

\(AH\cdot AD+CH\cdot CF=AE\cdot AC+CE\cdot CA=AC^2\)

\(BH\cdot BE+CH\cdot CF=BD\cdot BC+CD\cdot CB=BC^2\)

Do đó: \(2\left(AH\cdot AD+BH\cdot BE+CH\cdot CF\right)=BA^2+AC^2+BC^2\)

=>\(AH\cdot AD+BH\cdot BE+CH\cdot CF=\dfrac{AB^2+AC^2+BC^2}{2}\)

17 tháng 9 2023

Tam giác ABC có H là trực tâm nên:

a) \(AH \bot BC\);

b) \(BH \bot AC\);

c) \(CH \bot AC\). 

17 tháng 8 2016

thiếu đề nhưng mk đã làm 1 bài giống thế này nên biết đoạn sau của nó như sau: CMR:AB+BC+CA>3/2(AH+BH+CH)...Nếu ko đúng thì bỏ qua nhé!

Nếu chỉ có BDT đươn thuần thì : 
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH 
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC 
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC 
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC) 
```````````````````````````````````````... 
Ta se Cm một BDT mạnh hơn và toàn diện hơn 
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc 
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC 
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 ) 
Ta se CM Sa ≥ Sb 
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2) 
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \ 
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) = 
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S 
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH) 

= 12S = 6absinC = 24R^2 sinA sinB sinC 
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2 
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2 
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) = 
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC) 
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2 
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2 
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3 
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² => 
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c 

17 tháng 8 2016

THIẾU ĐỀ NHƯNG MÌNH LÀM BÀI TƯƠNG TỰ GIỐNG BÀI CỦA BẠN NHA !

Nếu chỉ có BDT đươn thuần thì : 
Qua H kẻ đt // AC cắt AB tại X và đt // AB cắt AC tại Y => XHY là hbh và HX vg BH, HY vg CH 
AB + AC = BX + (XA + AY) + YC = BX + (AX + XH) + YC > HB + HA + HC 
Tương tự có BA + BC > HA + HB + HC, CA + CB > HA + HB + HC 
Cộng vế theo vế 3 bđt ta có 2(AB + AC + BC) > 3(HA + HB + HC) 
```````````````````````````````````````... 
Ta se Cm một BDT mạnh hơn và toàn diện hơn 
Giả sử a >=b >= c. Do 2S = a ha = b hb = c hc =>ha <= hb <= hc 
Goij A1; B1 ; C1 lan luot la hinh chieu cua A; B : C len cac canh cua Tam giac ABC 
Ta co ha = AH.S/( Sb + Sc) ≤ hb = BH.S/(Sa + Sc) => AH( Sa + Sc) ≤ BH( Sb + Sc) (1 ) 
Ta se CM Sa ≥ Sb 
DO Sa/Sb = BC1/AC1 = BC cosB /( AC cosA) = sinA cosB/(sinB cosA) = tanA/tanB ≥ 1 do a ≥ b suy ra Sa≥ Sb => Sa + Sc ≥ Sb + Sc ( 2) 
Tu (1) va (2 ) suy ra AH ≤ BH, tuong tu ta suy ra BH ≤ CH do do AH ≤ BH ≤ CH \ 
Do 6S = a ha + b hb + c hc = aAH + b BH + c CH + 2(Sa+Sb+Sc) = 
= aAH + b BH + c CH +2S => aAH + b BH + c CH = 4S 
Áp dụng BDT che-bu-sep ta co (a+b+c)(AH + BH + CH) <= 3( a AH + b BH + c CH) 

= 12S = 6absinC = 24R^2 sinA sinB sinC 
Ta dự đoán 12R^2 sinA sinB sinC <= 1/(2√3) (a+b+c)^2 = 2/(√3)R^2 * ( sinA + sinB + sinC)^2 
<=> sinA sinB sinC < = 1/(6√3) ( sinA + sinB + sinC)^2 
Ta có (sinA + sinB + sinC )^2 <= 3( sin^2A + sin^2B + sin^2C) = 
= 3/2 ( 2 - cos^2C + cosC cos( A-B) ) <= 3/2 ( 2 -cos^2C + cosC) 
<= 27/4 =>sinA + sinB + sinC ≤ 3√3/2 
=> 3√3/2 ≥ 3³√(sinA sinB sinC) => ³√(sinA sinB sinC) ≤ √3/2 
suy ra (sinA + sinB + sinC)²/(sinA sinB sinC) ≥ 9/³√(sinA sinB sinC) ≥ 6√3 
Từ đó suy ra (a+b+c)(AH + BH + CH) ≤ √3/3 ( a + b + c )² => 
=> 3/2( AH + BH + CH) ≤ √3/2 (a+b+c) < a + b + c 
```````````````````````````````````````... 
Rõ ràng BDT cuối mà ta cm dc mạnh hơn BDT cần CM