Chứng tỏ đa thứ f(x) = -x2 + 2x -2016 ko có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
f(x) = -x2 + 2x - 2016 = -x2 + x + x - 1 - 2015 = x(1 - x) - (1 - x) - 2015 = (x - 1)(1 - x) - 2015 = -(1 - x)(1 - x) - 2015 = -(1 - x)2 - 2015
Có -(1 - x)2 \(\le\) 0 Vx
=> -(1 - x)2 - 2015 \(\le\) - 2015 < 0 Vx
Vậy đa thức f(x) ko có nghiệm
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x+1\right)^2+2\ge2>0\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Vậy đa thức f(x) không có nghiệm
Để phương trình có nghiệm thì f(x)=0
⇔x2-2x+2016=0
⇔ (x-1)2+2015=0
⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)
Vậy,phương trình vô nghiệm
F(x)=x2−2x+2016F(x)
F(x)=x2−2x+1+2015
F(x)=x2−x−x+1+2015
=x(x−1)−(x−1)+2015
=(x−1)^2+2015
Vì (x−1)2+2015≥2015>0 với mọi x ∈ R
=>F(x) vô nghiệm (đpcm)
Để đa thức f(x) có nghiệm thì x2-2x+2016=0
=>(x-1)2+2015=0(vô lí)
Vậy đa thức f(x) vô nghiệm
trả lời
trần thùy linh làm đúng rồi
nhưng chỗ (x-1)^2+2015=0 vô lý vì (x-1)^2>=0 nên (x-1)^2+2015>=2015 nha
viết vậy cho chặt chẽ thôi
f(x) = -x2 + 2x -2016=0
-x2+2x=2016
-x2+2x\(\ge\)2016
=>f(x) vô nghiệm
f(x) = -x2 + 2x -2016=0
-x2+2x=2016
-x2+2x$\ge$
2016
=>f(x) vô nghiệm