K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số thực  \(\left(1^2;2^2\right)\)  và  \(\left(a^2;4b^2\right)\), ta có:

\(\left(1^2+2^2\right)\left(a^2+4b^2\right)\ge\left(a+4b\right)^2=1\)  (do  \(a+4b=1\))

\(\Leftrightarrow\)  \(5\left(a^2+4b^2\right)\ge1\)

Kết luận: ...

7 tháng 5 2016

Áp dụng BĐT Bunhiacopxki với 2 dãy số x;2y và 1;2

Ta có: \(\left(x^2+4y^2\right)\left(1^2+2^2\right)\ge\left(x+4y\right)^2\)

\(<=>5\left(x^2+4y^2\right)\ge1^2=1\)

=> ĐPCM, dấu = xảy ra <=> \(\frac{x}{1}=\frac{2y}{2}<=>x=y\)

17 tháng 5 2016

Ta có:

abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)

Mà d + 2c + 4b chia hết cho 8 theo đề bài

Và 1000a + 96b + 8c cũng chia hết cho 8

=> abcd chia hết cho 8
 

16 tháng 5 2016

a) Vì p là số nguyên tố lớn hơn 3 

=> p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)

Nếu p có dạng 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) là hợp số 

=>p không có dạng 3k + 2

=>p có dạng  3k + 1 

=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3 ) là hợp số ( đpcm )

b)

Ta có:

abcd =1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = ( 1000a + 96b + 8c ) + ( d + 2c + 4b ) = 8 ( 125a + 12b + c ) + ( d + 2c + 4b )

Vì 8 ( 125a + 12b + c ) chia hết cho 8

Mà ( d + 2c + 4b ) chia hết cho 8

=> 8 ( 125a + 12b + c ) + ( d + 2c + 4b ) chia hết cho 8

hay abcd chia hết cho 8 ( đpcm )

16 tháng 5 2016

tự làm dệ

24 tháng 3 2017

Tớ ko biết làm, xin lỗi nhé!

5 tháng 8 2023

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

5 tháng 8 2023

(a1)2+(2b3)2+3(c1)2+1>0 (luôn đúng)

 BĐT ban đầu đúng

3 tháng 5 2017

2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !! 

CMR : nếu  \(a+b>1\)thì  \(a^2+b^2>\frac{1}{2}\)

 Ta có : \(a+b>1>0\)                                                                     ( 1 )

Bình phương hai vế ta được : 

                \(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\)                    ( 2 )

Mặt khác :

                 \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)                   ( 3 )

Cộng từng vế của (2) và (3) , ta được: 

                  \(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)

tk cko  mk nka vì công ngồi đánh máy tình !!! 

         

3 tháng 5 2017

Biết   \(a>b\)và   \(b>2\)\(\Leftrightarrow a>2\)

Ta có :  \(a>2\)

\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )

\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)

\(\Leftrightarrowđpcm\)

tk nka !1