K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

5 tháng 8 2023

(a1)2+(2b3)2+3(c1)2+1>0 (luôn đúng)

 BĐT ban đầu đúng

25 tháng 6 2017

Ta có:

\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)

\(=a^2+4b^2+3c^2-20a-12b-6c-14\)

\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)

\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)

Vậy đề bài vô lý

31 tháng 8 2017

i don't know

31 tháng 8 2017

em mới hok lớp 6 thui mà hi hi

6 tháng 8 2016

\(a^2+b^2+c^2+14=2a+4b+6c\)

\(a^2-2a+b^2-4b+c^2-6c+14=0\)

\(a^2-2\times a\times1+1^2-1^2+b^2-2\times b\times2+2^2-2^2+c^2-2\times c\times3+3^2-3^2+14=0\)

\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\left(a-1\right)^2\ge0\)

\(\left(b-2\right)^2\ge0\)

\(\left(c-3\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\Leftrightarrow\left(a-1\right)^2=\left(b-2\right)^2=\left(c-3\right)^2=0\)

\(\Leftrightarrow a-1=b-2=c-3=0\)

\(\Leftrightarrow a=1;b=2;c=3\)

\(\Rightarrow a+b+c=1+2+3=6\)

20 tháng 3 2017

chuyển 2a + 4b + 6c sang vế trái ta được:

a^2 + b^2 + c^2 -2a -4b -6c + 14 =0

<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0

<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0

=> (a - 1)^2 = 0          a - 1 = 0          a = 1

     (b - 2)^2 = 0  <=>  b - 2 = 0  <=>  b = 2          

     (c - 3)^2 = 0          c - 3 = 0          c = 3

=> a + b + c = 1 + 2 + 3 = 6

Mình trình bày không được đẹp, bạn thông cảm nha =)

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

2 tháng 8 2016

\(a^2+5b^2-4ab+2a-6b+3\)

\(=a^2-4ab+2a+5b^2-6b+3\)

\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)

\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)

\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)

\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)

\(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b)  (đpcm)