Cho số n nguyên dương thỏa mãn 2n+1 và 3n +1 là các số chính phương. chứng minh rằng n chia hết cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(10\le n\le99\)
\(\Rightarrow21\le2n+1\le201\)
\(\Rightarrow2n+1\) là số chính phương lẻ (1)
\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)
\(\Rightarrow dpcm\)
\(\Rightarrow n=40⋮40\Rightarrow dpcm\)
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.
\(\Rightarrow3n+1,2n+1\)là số chính phương.
\(\Rightarrow3n+1=x^2;2n+1=y^2\)
\(\Rightarrow y\)lẻ.
\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)
\(\Rightarrow n\)chẵn.
\(\Rightarrow3n+1\) lẻ
\(\Rightarrow x\)lẻ.
\(\Rightarrow n=x^2-y^2⋮8\)
Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)
Vì số chính phương chia \(5\)dư \(0,1,4\)
\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)
\(\Rightarrow x^2-y^2⋮5\)
\(\Rightarrow n⋮5\)
\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
2n+1=a^2 (1), 3n+1=b^2 (2)
Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn
suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1
(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)
suy ra 5n chia hết cho 8, suy ra n chia hết cho 8
Ta cần chứng minh n chia hết cho 5
Số chính phương có các tận cùng là 0,1,4,5,6,9
Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5
Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)
các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
2n + 1 là số chính phương lẻ nên chia cho 8 dư 1 => n chẵn => 3n+1 là số chính phương lẻ, số này chia cho 8 dư 1 nên 3n chia hết cho 8, do đó n chia hết cho 8 (1).
Cách 1. 3n + 1 tận cùng 1, 5, 9 => 3n tận cùng 0, 4, 8 => n tận cùng 0, 8, 6. Loại trường hợp n tận cùng 8 (vì khi đó 2n + 1 tận cùng 7, không là số chính phương), loại trường hợp n tận cùng 6 (vì khi đó 2n + 1 tận cùng 3, không là số chính phương). Vậy n tận cùng 0 (2).
Từ (1) và (2) suy ra n chia hết cho 40.
Cách 2. 2n + 1, 3n + 1 là các số chính phương lẻ nên tận cùng bằng 1, 5, 9 do đó chia cho 5 dư 1, 0, 4. Tổng của chúng là 5n + 2 nên mỗi số 2n + 1 và 3n + 1 đều chia cho 5 dư 1, do đó 2n và 3n đều chia hết cho 5, vậy n chia hết cho 5(3).
Từ (1) và (3), suy ra n chia hết cho 40