K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:
PT $\Leftrightarrow [x(2-x)]^2=3[(1-x)^2-1]-2$

$\Leftrightarrow [x(2-x)]^2=3[-x(2-x)]-2$

$\Leftrightarrow [x(2-x)]^2+3x(2-x)-2=0$

Đặt $x(2-x)=a$ thì: $a^2+3a-2=0$

$\Leftrightarrow a=\frac{-3\pm \sqrt{17}}{2}$

$\Leftrightarrow x(2-x)=\frac{-3\pm \sqrt{17}}{2}$

Đến đây là dạng PT bậc 2 đơn giản rồi. Bạn hoàn toàn có thể tự giải.

a: =>x-3=2 hoặc x-3=-2

=>x=5 hoặc x=1

b: =>x2=0

hay x=0

c: =>(3x-5-x+1)(3x-5+x-1)=0

=>(2x-4)(4x-6)=0

=>x=2 hoặc x=3/2

d: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-4\right)=0\)

hay \(x\in\left\{1;-1;4\right\}\)

14 tháng 2 2022

\(a,\left(x-3\right)^2=4\\\Leftrightarrow\left(x-3\right)^2-2^2=0\\ \Leftrightarrow \left(x-3-2\right).\left(x-3+2\right)=0\\ \Leftrightarrow\left(x-5\right).\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\\\Rightarrow S=\left\{1;5\right\}\\ b,x^2.\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow S=\left\{0\right\}\\ c,\left(3x-5\right)^2-\left(x-1\right)^2=0\\ \Leftrightarrow\left(3x-5-x+1\right).\left(3x-5+x-1\right)=0\\ \Leftrightarrow\left(2x-4\right).\left(4x-6\right)=0\\ \Leftrightarrow2.\left(x-2\right).2.\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow S=\left\{\dfrac{3}{2};2\right\}\)

\(d,\left(x^2-1\right).\left(2x-1\right)=\left(x^2-1\right).\left(x+3\right)\\ \Leftrightarrow\left(x^2-1\right).\left(2x-1-x-3\right)=0\\ \Leftrightarrow\left(x^2-1\right).\left(x-4\right)=0\\ \Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\\ \Rightarrow S=\left\{-1;1;4\right\}\)

2 tháng 6 2018

⇔ ( x - 1 )( x + 2 )( 7 - 5x ) = 0

Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy phương trình có tập nghiệm là S = { - 2; 1; 7/5 }.

11 tháng 1 2022

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)

\(\Leftrightarrow x-1=3x-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c: =>x-3=0

hay x=3

d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

11 tháng 1 2022

 \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)

c: =>(x-3)(x2+3x+5)=0

=>x-3=0

hay x=3

d: =>(3x-1)(x2+2-7x+10)=0

=>(3x-1)(x-3)(x-4)=0

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

18 tháng 7 2021

\(a,=>x^3-2x^2+4x+2x^2-4x+8-x^3+2x-15=0\)

\(< =>2x-7=0< =>x=\dfrac{7}{2}\)

b,\(=>x\left(x^2-25\right)-\left(x+2\right)\left(x^2-2x+4\right)-3=0\)

\(< =>x^3-25x-x^3+2x^2-4x-2x^2+4x-8-3=0\)

\(< =>-25x-11=0\)

\(< =>x=-0,44\)

18 tháng 7 2021

cảm ơn bạn nhiều nha!

 

a: =>4x^2-24x+36-4x^2+4x-1<10

=>-20x<10-35=-25

=>x>=5/4

b: =>x(x^2-25)-x^3-8<=3

=>x^3-25x-x^3-8<=3

=>-25x<=11

=>x>=-11/25

16 tháng 1 2021

\(a,\left(2x-3\right)^2=\left(x+1\right)^2\\ \Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-4\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\x=4\end{matrix}\right. \\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{2}{3};4\right\}\)

 

16 tháng 1 2021

\(b,x^2-6x+9=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2=9\left(x-1\right)^2\\ \Leftrightarrow\left(x-3\right)^2-9\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-3^2\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left[3\left(x-1\right)\right]^2=0\\ \Leftrightarrow\left(x-3\right)^2-\left(3x-3\right)^2=0\\ \Leftrightarrow\left(x-3+3x-3\right)\left(x-3-3x+3\right)=0\\ \Leftrightarrow-2x\left(4x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-2x=0\\4x-6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{2}\right\}\)

 

10 tháng 4 2023

a, Thay \(m=-3\) vào \(\left(1\right)\)

\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy với \(m=-3\) thì \(x=0;x=-8\)

b,  

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)

phương trình có hai nghiệm phân biệt

 \(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)

\(\Rightarrow\forall m\)

Áp dụng hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)

Vậy \(m=\dfrac{1}{9}\)

10 tháng 4 2023

a.

Thế m = -3 vào phương trình (1) ta được:

\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)

\(\Leftrightarrow\) \(x^2+8x=0\)

 \(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)

b.

Để phương trình (1) có hai nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)

\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)

\(\Leftrightarrow4m^2-8m+4+4m+12>0\)

\(\Leftrightarrow4m^2-4m+16>0\)

\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)

\(\Leftrightarrow\left(2m-1\right)^2+15>0\)

Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)

có:

\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)

<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)

<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)

<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)

<=> \(-4m+16+5x_1-x_2=0\)

<=> \(5x_1-x_2=4m-16\) (II)

Từ (I) và (II) ta có:

\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)

Từ (2) ta có:

\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)

Thế (x) vào (3) được:

\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)

<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)

<=>  \(-1,2m-1,2+1,2x_2=0\)

<=> \(x_2=1,2m+1,2\) (xx)

Thế (xx) vào (3) được:

\(x_1+1,2m+1,2=2m-2\)

<=> \(x_1+1,2m+1,2-2m+2=0\)

<=> \(x_1-0,8m+3,2=0\)

<=> \(x_1=-3,2+0,8m\) (xxx)

Thế (xx) và (xxx) vào (4) được:

\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)

<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)

<=> \(0,96m^2-1,88m-0,84=0\)

\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)

\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)

\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)

T.Lam

9 tháng 3 2023

1. x(x-3)-(x+2)(x-1)=3 <=> x- 3x - x2 - x + 2 = 3 => 4x = -1 => x = 1/4 

2. 

a) x = 0, x=1 (2 nghiệm, loại)

b) x2 + 1 > 0 => x = - 2 (1 nghiệm, chọn b)

c) <=> x(x-3) = 0 => x = 0, x=3 (2 nghiệm, loại)

d) (x-1)2 + 2 > 0 => Vô nghiệm (loại)