Vào thi tuyển 10 có được sử dụng các dạng BĐT như BĐT Cô-si ko? (có cần phải chứng minh ko)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xài bđt phụ mới cần phải chứng minh nhé
mà tau nhớ làm gì có Cô si dạng Engel ??? ._.
chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
Tham khảo Bất đẳng thức Côsi ( Cauchy ) - ToanHoc.org
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
vì a+b+c=1 => dpcm
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)
<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9 (*)
áp đụng cô si
\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
tương tự
\(\frac{a}{c}+\frac{c}{a}>=2\)
\(\frac{b}{c}+\frac{c}{b}>=2\)
=> (*) đúng Mà a+b+c=1
=> đpcm
Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)
\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)
Cái này đúng vậy ta có điều phải chứng minh
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)
\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)
Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng
- Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
- Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Áp dụng BĐT trên , ta được : \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)
\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)
- Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)
Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\)
hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)
Bạn tự xét dấu đẳng thức nhé!
Có lẽ không đâu bn
Mà thi vào lớp 10 thì cô si với bunhiacopski là nhiều thôi bn
Thi tốt nha bn
TL:
Chỗ tôi được phép sử dụng luôn ko cần chứng minh
HT
????
cho 1 vé báo cáo free nhé