Cho A= 1/12+1/32+1/42+...+1/502. Chứng minh A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
\(A=\dfrac{1}{3}-\dfrac{1}{12}\)
\(A=\dfrac{1}{4}\)
b)Đặt \(B=\dfrac{1}{501}+\dfrac{1}{502}+...+\dfrac{1}{1000}\)(có 500 số hạng)
\(B< \dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)(có 500 số hạng)
\(B< 500\cdot\dfrac{1}{500}=1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
\(A=1-\frac{499}{500}+1-\frac{500}{501}+1-\frac{501}{502}+...+1-\frac{598}{599}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{499}{500}+\frac{500}{501}+\frac{501}{502}+...+\frac{598}{599}\right)\)
\(=...\)
Ta có:
1/3^2 < 1/2.3
1/4^2 < 1/3.4
....
1/50^2 < 1/49.50
=> A = 1/1^2 + 1/3^2+1/4^2+...+1/50^2 < 1 + 1/2.3 +1/3.4+...+1/49.50 = 1 + 1/2 - 1/3 + 1/3-1/4 + ...+1/49-1/50 = 1+1/2 - 1/50 < 2
Vậy A<2 (ĐPCM)
ta có:
1/12=1
=> A>1
ta cần chứng minh
A-1<1
ta có
\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};....;\frac{1}{50^2}<\frac{1}{49.50}\)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}=\frac{48}{100}<1\)
=> A-1<1
=>A<2