cho so tu nhien n=(10*10...*10+8)/9.Hay chung to rang n la so tu nhien
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)
\(=99...9-9n+27n\)( n c/s 9 )
\(=9\left(11...1-n\right)+27n\)( n c/s 1 )
Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)
Mà : \(27n⋮27\Rightarrow A⋮27\)
Vậy ...
Ta có :
\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)
Ta có công thức :
\(a^m-b^m⋮a-b\) với mọi a;b thuộc R
\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)
10mu 2014+53 =100000.....0053[có 2012 so 0]
ta có:1+0+0+....+5+3 =9=9chia hết cho 9
=>10 mũ 2014 +53 chia hết cho 9
Vậy 2014 mũ [2014 +53 ] /9 là một số tự nhiên
a,10^2011+2=100...0(2011 chữ số 0)=100......2(2011 chữ số 0).tổng các chữ số =3 nên 10^2011 +2 chia hết cho 3
b,10^2011+8=100...0(2011 chữ số 0)=100......8(2011 chữ số 0).tổng các chữ số=9 nên 10^2011 +8 chia hết cho 9
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau
Gọi ước chung của 2 số này là d
=> 7n+10 chia hết cho d
=> 5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
=> 7(5n+7) chia hết cho d
=> 35n+ 50 chia hết cho d
=> 35n+ 49 chia hết cho d
=> 35n+50 - 35n+49 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U( 1)
=> d=1
=> Nguyên tố cùng nhau
Tick mình nha các bạn