Làm gấp giúp mình phần a, b với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:
$B=90^0-C=90^0-45^0=45^0$
Do đó, tam giác $ABC$ vuông cân tại $A$
$\Rightarrow AC=AB=50$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)
f.
Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)
$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$
$\Rightarrow B=44,42^0$
$C=90^0-B=90^0-44,42^0=45,58^0$
b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)
nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)
Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=50^2+50^2=5000\)
hay \(BC=50\sqrt{2}\left(cm\right)\)
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Lời giải:
a) Xét tam giác $ABM$ và $ACM$ có:
$\widehat{AMB}=\widehat{AMC}=90^0$
$AB=AC$ (do $ABC$ cân tại A)
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (ch-cgv)
b) Xét tam giác $ANP$ và $CNM$ có:
$AN=CN$ (do $N$ là trung điểm $AC$)
$NP=NM$
$\widehat{ANP}=\widehat{CNM}$ (đối đỉnh)
$\Rightarrow \triangle ANP=\triangle CNM$ (c.g.c)
$\Rightarrow \widehat{APN}=\widehat{CMN}$
Mà 2 góc này ở vị trí so le trong nên $AP\parallel CM$. Mà $AM\perp CM$ nên $AP\perp AM$ (đpcm)
c)
Từ tam giác bằng nhau phần b suy ra $AP=CM(1)$
Xét tam giác $CMQ$ và $CRQ$ có:
$\widehat{CQM}=\widehat{CQR}=90^0$
$QR=QM$
$QC$ chung
$\Rightarrow \triangle CMQ=\triangle CRQ$ (c.g.c)
$\Rightarrow CM=CR(2)$
Từ $(1);(2)\Rightarrow CR=PA$ (đpcm)
Hình vẽ: